[en] Two thermoresistant acetic acid bacteria (TAAB) were previously isolated and selected for a sustainable development of vinegar fermentation in Subsaharan Africa. Their use as a starter culture in vinegar manufactures in such regions could reduce considerably water cooling expenses. For optimising biomass preservation, the effect of 20% w/w mannitol as cryoprotectant on the cells viability after freeze-drying process and during storage was evaluated. Results showed that freeze-dried cells could be conserved at 4 degrees C for at least 6 months without loss of viability. The main reasons were that cryoprotectant tends to lower the water activity (a(w)) and to maintain a temperature of product weaker than that of the glass transition temperature T-g. Furthermore, the heat resistance of freeze-dried cells during storage was all the more increased that strains were cryoprotected. In addition, intrinsically, an increase of saturated fatty acids with the temperature is the essential modification in the lipidome level of membrane cells when the fermentation occured at a temperature of 30 degrees C. Tolerance to heat during storage was significantly enhanced under such mechanisms. (c) 2006 Elsevier Ltd. All rights reserved.
Disciplines :
Biotechnology
Author, co-author :
Ndoye, Bassirou
Weekers, Frederic
Diawara, Brehima
Guiro, A. T.
Thonart, Philippe ; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles
Language :
English
Title :
Survival and preservation after freeze-drying process of thermoresistant acetic acid bacteria isolated from tropical products of Subsaharan Africa
Akiko O.K., Wang Y., Sachiko K., Tayama K., Yukimichi K., and Fujiharu Y. Cloning and characterization of groESL Operon in Acetobacter aceti. Journal of Bioscience and Bioengineering 94 2 (2002) 140-147
Carcoba R., and Rodriguez A. Influence of cryoprotectants on the viability and acidifying activity of frozen and freeze-dried cells of the novel starter strain Lactococcus lactis ssp. lactis CECT 5180. European Food Research and Technology 211 6 (2000) 433-437
Carvalho A.S., Silva J.H.P., Teixeira P., Malcata F.X., and Gibbs P. Survival of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnology Letters 24 19 (2002) 1587-1591
Cerf, O. (2005) Les outils disponibles pour déterminer la durée de vie microbiologique des aliments. Application à la gestion du risque lié à Listeria monocytogenes. In Proceedings of the tenth conference on food microbiology, University of Liege, 23-24/06/2005.
Cleenwerck I., Vandemeulebroecke K., Janssens D., and Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisae sp. nov. and Acetobacter malorum sp. nov. International Journal of Systematic and Evolutionary Microbiology 52 (2002) 1551-1558
De Giulo B., Orlando P., Barba G., Coppola R., De Rosa M., De Prisco P.P., and Nazzaro F. Use of alginate and cryo-protective sugars to improve the viability of lacti acid bacteria after freezing and freeze-drying. World Journal of Microbiology and Biotechnology 21 5 (2005) 739-746
De Ley J., Gillis M., and Swings J. Acetobacteriaceae. In: Krieg N.R., and Holt J.G. (Eds). Bergey's manual of systematic bacteriology (1984), Williams and Wilkins, Baltimore 267-278
Deppenmeir U., Hoffmeister M., and Prust C. Biochemistry and biotechnological applications of Gluconobacter strains. Applied Microbiology and Biotechnology 60 (2002) 233-242
Heckly R.J., and Quay J. Adventitious chemistry at reduced water activities: Free radicals and polyhydroxy agents. Cryobiology 20 5 (1983) 613-624
Joyeux C., Fouchard S., Llopiz P., and Neunlist S. Influence of the temperature and the growth phase on the hopanoids and fatty acids content of Frateuria Laurantia (DSMZ 6220). FEMS Microbiology Ecology 47 (2004) 371-379
Le Meste, M., Lorient, D., & Simatos, D. (2002). L'eau dans les aliments, Tec. et Doc Paris. France: Lavoisier.
Le Meste M., Roudaut E.C., Simatos D., and Colas B. Propriétés fonctionnelles de 1'eau dans les aliments. Industrie Alimentari Agriculturae 118 (2001) 21-28
Le Meste M., and Simatos D. La transition vitreuse: indices en technologie Alimentaire. Industrie Alimentari Agriculturae 107 (1990) 5-11
Lievense L.C., Verbeek M.A.M., Meerdink G., and Van't Riet K. Inactivation of Lactobacillus plantarum during drying II. Measurement and modeling of the thermal inactivation. Bioseparation 1 (1990) 161-170
Miyamoto-Shinohara Y., Imaizumi T., Sukenobe J., Murakami Y., Kawamura S., and Komatsu Y. Survival rate of microbes after freeze drying and long-term storage. Cryobiology 41 3 (2000) 251-255
Ndoye, B., Lebecque, S., Dubois-Dauphin, R., Tounkara, L., Kere, C., Diawara, B., et al. (in press). Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial vinegar. Enzyme and Microbial Technology.
Parsell D.A., and Lindquist S. The function of heat shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annual Review of Genetics 27 (1993) 437-496
Roos Y.H. Water activity and physical state effects on amorphous food stability. Journal of Food Processing and Preservation 16 (1993) 433-447
Sablani, S. S., Kasapis, S., & Rahman, M. S. (in press). Evaluating water activity and glass transition concepts for food stability. Journal of Food Engineering, doi:10.1016/j.jfoodeng.2005.09.025.
Samelis J., Kakouri A., and Rementzis J. Selective effect of the product type and the packaging conditions on the species of Lactic acid bacteria dominating the spoilage microbial association of cooked meats at 4 °C. Food Microbiology 17 3 (2000) 329-340
Schuck, P., Bouhallab, S., Durupt, D., Vareille, P., Humbert, J. -P., & Martin, M. (2004). Séchage des lactosérums et dérivés: rôle du lactose et de la dynamique de l'eau. Lait 84, 243-268, INRA, EDP Sciences, 2004.
Sokollek J.S., and Hammes P.W. Description of a culture preparation for vinegar fermentation. Systematic and Applied Microbiology 20 (1997) 481-491
Sokollek J.S., Hertel C., and Hammes P.W. Cultivation and preservation of vinegar bacteria. Journal of Biotechnology 60 (1998) 195-206
Sow N.M., Dubois-Dauphin R., Roblain D., Guiro A.T., and Thonart Ph. Polyphasic identification of a new thermotolerant species of lactic acid bacteria isolated from chicken faeces. African Journal of Biotechnology 4 5 (2005) 409-421
Suutari M., and Laasko S. Microbial fatty acids and thermal adaptation. Critical Reviews in Microbiology 20 (1994) 285-328
To B.C.S., and Etzel M.R. Survival of Brevibacterium linens (ATCC 9174) after spray drying, freeze drying or freezing. Journal of Food Science 62 1 (1997) 167-171
Uyttendaele M., Rajkovic A., Benos G., Francois K., Devliegere F., and Debevere J. Evaluation of a challenge testing protocol to assess the stability of ready-to-eat cooked meat products against growth of Listeria monocytogenes. International Journal of food Microbiology 90 (2004) 219-236
White D.C., Davis W.M., Nickels J.S., King J.D., and Bobbie J.R. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40 (1979) 51-62
Zelles L. Fatty acids patterns of microbial phospholipids and lipopolysaccharides. In: Schinner F., Öhlinger R., Kandeler E., and Margesin R. (Eds). Methods in soil biology (1996), Springer, Berlin 80-93
Ziadi M., Touhami Y., Achour M., Thonart P., and Hamdi M. The effect of heat stress on freeze-drying and conservation of Lactococcus. Biochemical Engineering Journal 24 (2005) 141-145