Article (Scientific journals)
Testosterone Metabolism in the Avian Hypothalamus
Balthazart, Jacques
1991In Journal of Steroid Biochemistry and Molecular Biology, 40 (4-6), p. 557-70
Peer Reviewed verified by ORBi
 

Files


Full Text
175_1991 J ster bioch review.pdf 4
Publisher postprint (1.35 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] Many central actions of testosterone (T) require the transformation of T into several metabolites including 5 alpha-dihydrotestosterone (5 alpha-DHT) and estradiol (E2). In birds as in mammals, 5 alpha-DHT and E2, alone or in combination, mimic most behavioral effects of T. The avian brain is, in addition, able to transform T into 5 beta-DHT, a metabolite which seems to be devoid of any behavioral or physiological effects, at least in the context of reproduction. By in vitro product-formation assays, we have analyzed the distribution, sex differences and regulation by steroids of the 3 main T metabolizing enzymes (aromatase, 5 alpha- and 5 beta-reductases) in the brain of the Japanese quail (Coturnix c. japonica) and the zebra finch (Taeniopygia guttata castanotis). In the hypothalamus of quail and finches, aromatase activity is higher in males than in females. It is also decreased by castration and increased by T. The activity of the 5 alpha-reductase is not sexually differentiated nor controlled by T. The 5 beta-reductase activity is often higher in females than in males but this difference disappears in gonadectomized birds and no clear effect of T can be observed at this level. The zebra finch brain also contains a number of steroid-sensitive telencephalic nuclei [e.g. hyperstriatum ventrale, pars caudale (HVc) and robustus archistriatalis (RA)] which play a key role in the control of vocalizations. These nuclei also contain T-metabolizing enzymes but the regulation of their activity is substantially different from what has been observed in the hypothalamus. Aromatase activity is for example higher in females than in males in HVc and RA and the enzyme in these nuclei is not affected by castration nor T treatment. In these nuclei, the 5 alpha-reductase activity is higher in males than in females and the reverse is true for the 5 beta-reductase. These sex differences in activity are not sensitive to gonadectomy and T treatment and might therefore be organized by neonatal steroids. We have been recently able to localize aromatase-immunoreactive (AR-ir) neurons by ICC in the brain of the quail and zebra finch. Positive cells are found in the preoptic area, ventromedial and tuberal hypothalamus. AR-ir material is found in the perikarya of cells and fills the entire cellular processes including axons. At the electron microscope level, immunoreactive material can clearly be observed in the synaptic boutons. This observation raises questions concerning the mode of action of estrogens produced by central aromatization of T.
Disciplines :
Zoology
Neurosciences & behavior
Endocrinology, metabolism & nutrition
Author, co-author :
Balthazart, Jacques  ;  Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie de la différenciation sexuelle du cerveau
Language :
English
Title :
Testosterone Metabolism in the Avian Hypothalamus
Publication date :
1991
Journal title :
Journal of Steroid Biochemistry and Molecular Biology
ISSN :
0960-0760
eISSN :
1879-1220
Publisher :
Elsevier, United Kingdom
Volume :
40
Issue :
4-6
Pages :
557-70
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 18 November 2009

Statistics


Number of views
53 (1 by ULiège)
Number of downloads
3 (0 by ULiège)

Scopus citations®
 
38
Scopus citations®
without self-citations
28
OpenCitations
 
35

Bibliography


Similar publications



Contact ORBi