[en] The minimum covariance determinant (MCD) scatter estimator is a highly robust estimator for the dispersion matrix of a multivariate, elliptically symmetric distribution. It is relatively fast to compute and intuitively appealing. In this note we derive its influence function and compute the asymptotic variances of its elements. A comparison with the one step reweighted MCD and with S-estimators is made. Also finite-sample results are reported. (C) 1999 Academic Press AMS 1991 subject classifications: 62F35, 62G35.
Disciplines :
Mathematics
Author, co-author :
Croux, C.
Haesbroeck, Gentiane ; Université de Liège - ULiège > Département de mathématique > Statistique (aspects théoriques)
Language :
English
Title :
Influence function and efficiency of the minimum covariance determinant scatter matrix estimator
Bickel P. J., Lehmann E. L. Descriptive statistics for nonparametric models III, Dispersion. Ann. Statist. 4:1976;1139-1159.
Butler R. W. Nonparametric interval and point prediction using data trimmed by a Grubbs type outlier rule. Ann. Statist. 10:1982;197-204.
Butler R. W., Davies P. L., Jhun M. Asymptotics for the minimum covariance determinant estimator. Ann. Statist. 21:1993;1385-1400.
Croux C., Rousseeuw P. J. A class of high-breakdown scale estimators based on subranges. Comm. Statist. Theory Methods. 21:1992;1935-1951.
Croux C., Haesbroeck G. Technical Report. 1999.
Davies P. L. Asymptotic behavior of S-estimators of multivariate location parameters and dispersion matrices. Ann. Statist. 15:1987;1269-1292.
Davies P. L. The asymptotics of Rousseeuw's minimum volume ellipsoid. Ann. Statist. 20:1992a;1828-1843.
Davies P. L. An efficient Fréchet Differentiable high breakdown multivariate location and dispersion estimator. J. Multivariate Anal. 40:1992b;311-327.
Grübel R. A minimal characterization of the covariance matrix. Metrika. 35:1988;49-52.
Hampel F. R., Ronchetti E. M., Rousseeuw P. J., Stahel W. A. Robust Statistics: The Approach Based on Influence Functions. 1996;Wiley, New York.
Hawkins D. M. The feasible solution algorithm for the minimum covariance determinant estimator in multivariate data. Comput. Statist. Data Anal. 17:1994;197-210.
He X., Wang G. Cross-checking using the minimum volume ellipsoid estimator. Statistica Sinica. 6:1996;367-374.
Hössjer O., Croux C. Generalizing univariate signed rank statistics for testing and estimating a multivariate location parameter. Nonparametric Statist. 4:1995;293-308.
Lopuhaä H. P. On the relation between S-estimators and M-estimators of multivariate location and covariance. Ann. Statist. 17:1989;1662-1683.
Lopuhaä H. P. Multivariate τ-estimators for location and scatter. Canad. J. Statist. 19:1991;307-321.
Lopuhaä H. P. Highly efficient estimators of multivariate location with high breakdown point. Ann. Statist. 19:1992;229-248.
H. P. Lopuhaä, Asymptotics of reweighted estimators of multivariate location and scatter, preprint, TU Delft, 1997.
Lopuhaä H. P., Rousseeuw P. J. Breakdown properties of affine equivariant estimators of multivariate location and covariance matrices. Ann. Statist. 19:1991;229-248.
Maronna R. A., Yohai. Robust estimation of multivariate location and scatter. Kotz S., Read C., Banks D. Encyclopedia of Statistical Sciences Update. 1998;589-596 Wiley, New York.
Rocke D. M. Robustness properties of S-estimators of multivariate location and shape in high dimensions. Ann. Statist. 24:1996;1327-1345.
Rousseeuw P. J. Multivariate estimation with high breakdown point. Grossmann W., Pflug G., Vincze I., Wertz W. Mathematical Statistics and Applications. 1985;283-297 Reidel, Dordrecht.
Rousseeuw P. J., Leroy A. M. Robust Regression and Outlier Detection. 1987;Wiley, New York.
Rousseeuw P. J., Croux C. The bias of k-step M-estimators. Statist. Probab. Lett. 20:1994;411-420.
P. J. Rousseeuw, and, K. Van Driessen, A fast algorithm for the minimum covariance determinant estimator, Technometrics, to appear.
Ruppert D. Computing S-estimators for regression and multivariate location/dispersion. J. Comput. Graph. Statist. 1:1992;253-270.
Yohai V. J., Maronna R. A. The maximum bias of robust covariances. Comm. Statist. A. 19:1990;3924-3933.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.