influence function; principal component analysis; robust correlation matrix; robust estimation
Abstract :
[en] A robust principal component analysis can be easily performed by computing the eigenvalues and eigenvectors of a robust estimator of the covariance or correlation matrix. In this paper we derive the influence functions and the corresponding asymptotic variances for these robust estimators of eigenvalues and eigenvectors. The behaviour of several of these estimators is investigated by a simulation study. It turns out that the theoretical results and simulations favour the use of S-estimators, since they combine a high efficiency with appealing robustness properties.
Disciplines :
Mathematics
Author, co-author :
Croux, C.
Haesbroeck, Gentiane ; Université de Liège - ULiège > Département de mathématique > Statistique (aspects théoriques)
Language :
English
Title :
Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
BOENTE, G. (1987). Asymptotic theory for robust principal components. J. Mult. Anal. 21, 67-78.
CAMPBELL, N. A. (1980). Robust procedures in multivariate analysis: robust covariance estimation. Appl. Statist. 29, 231-7.
CRITCHLEY, F. (1985). Influence in principal components analysis. Biometrika 72, 627-36.
CROUX, C. & HAESBROECK, G. (1999). Influence function and efficiency of the minimum covariance determinant scatter matrix estimator. J. Mult. Anal. 71, 161-90.
CROUX, C. & RUIZ-GAZEN, A. (1996). A fast algorithm for robust principal components based on projection pursuit. In Compstat: Proceedings in Computational Statist., Ed. A. Prat, pp. 211-7. Heidelberg: Physica-Verlag.
DAIGLE, G. & RIVEST, L-P. (1992). A robust biplot. Can. J. Statist. 20, 241-55.
DAVIES, P. L. (1987). Asymptotic behavior of S-estimates of multivariate location parameters and dispersion matrices. Ann. Statist. 15, 1269-92.
DEVLIN, S. J., GNANADESIKAN, R. & KETTENRING, J. R. (1975). Robust estimation and outlier detection with correlation coefficients. Biometrika 62, 531-45.
DEVLIN, S. J., GNANADESIKAN, R. & KETTENRING, J. R. (1981). Robust estimation of dispersion matrices and principal components. J. Am. Statist. Assoc. 76, 354-62.
FILZMOSER, P. (1999). Robust principal component and factor analysis in the geostatistical treatment of environmental data. Environmetrics 10, 363-75.
HAMPEL, F. R., RONCHETTI, E. M., ROUSSEEUW, P. J. & STAHEL, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. New York: Wiley.
HUBER, P. J. (1981). Robust Statistics. New York: Wiley.
JACKSON, J. E. (1991). A User's Guide to Principal Components. New York: Wiley.
JAUPI, L. & SAPORTA, G. (1993). Using the influence function in robust principal components analysis. In New Directions in Statistical Data Analysis and Robustness, Ed. S. Morgenthaler, E. Ronchetti and W. A. Stahel, pp. 147-56. Basel: Birkhauser.
JOLLIFFE, I. T. (1986). Principal Component Analysis. New York: Springer-Verlag.
LI, G. & CHEN, Z. (1985). Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo. J. Am. Statist. Assoc. 80, 759-66.
LOCANTORE, N., MARRON, J. S., SIMPSON, D. G., TRIPOLI, N., ZHANG, J. T. & COHEN, K. L. (1999). Robust principal component analysis for functional data. Test 8, 1-73.
LOPUHAÄ, H. P. (1989). On the relation between S-estimators and M-estimators of multivariate location and covariance. Ann. Statist. 17, 1662-83.
LOPUHAÄ, H. P. (1999). Asymptotics of reweighted estimators of multivariate location and scatter. Ann. Statist. 27, 1638-65.
MARONNA, R. A. (1976). Robust M-estimators of multivariate location and scatter. Ann. Statist. 4, 51-67.
MARONNA, R. A. & YOHAI, V. J. (1998). Robust estimation of multivariate location and scatter. In Encyclopedia of Statistical Sciences Update, 2, Ed. S. Kotz, C. Read and D. Banks, pp. 589-96. New York: Wiley.
NAGA, R. & ANTILLE, G. (1990). Stability of robust and non-robust principal component analysis. Comp. Statist. Data Anal. 10, 169-74.
RIVEST, L-P. & PLANTE, N. (1988). L'analyse en composantes principales robuste. Rev. Statist. Appl. 36, 55-66.
ROUSSEEUW, P. J. (1985). Multivariate estimation with high breakdown point. In Mathematical Statistics and Applications, Vol. B, Ed. W. Grossmann, G. Pflug, I. Vincze and W. Wertz, pp. 283-97. Dordrecht: Reidel.
ROUSSEEUW, P. J. & LEROY, A. M. (1987). Robust Regression and Outlier Detection. New York: Wiley.
ROUSSEEUW, P. J. & VAN DRIESSEN, K. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212-23.
RUPPERT, D. (1992). Computing S-estimators for regression and multivariate location/dispersion. J. Comp. Graph. Statist. 1, 253-70.
SHI, L. (1997). Local influence in principal components analysis. Biometrika 84, 175-86.
SIBSON, R. (1979). Studies in the robustness multidimensional scaling: perturbational analysis of classical scaling. J. R. Statist. Soc. B 42, 217-29.
TANAKA, Y. (1988). Sensitivity analysis in PCA: influence on the subspace spanned by principal components. Commun. Statist A 17, 3157-75.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.