Reference : Some properties of generalized age-distribution equations in fluid dynamics
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Mathematics
Some properties of generalized age-distribution equations in fluid dynamics
Beckers, Jean-Marie mailto [Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie physique >]
Delhez, Eric mailto [Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mathématiques générales >]
Deleersnijder, Eric [Université Catholique de Louvain-La-Neuve > Unité ASTR]
SIAM Journal on Applied Mathematics
Society for Industrial & Applied Mathematics
Yes (verified by ORBi)
[en] advection diffusion ; age
[en] The concept of age in fluid dynamics is analyzed in the case of a tracer advection-diffusion equation. From the general solution in a uniform velocity field, it is shown that unexpected symmetry properties arise for the age field. In particular, for a point release, the age field is isotropic, regardless of the direction of the ow and the value of the diffusion coefficient. The analysis is then extended to situations with time-varying currents, where the symmetry can be broken under some circumstances. Finally, we show a method by which a time-dependent problem can be used to assess a stationary concentration distribution function, providing details about the propagation of younger and older material at a given location.
Centre Interfacultaire de Recherches en Océanologie - MARE - GHER

File(s) associated to this reference

Fulltext file(s):

Restricted access
Some properties.pdfNo commentaryPublisher postprint2.18 MBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.