Article (Scientific journals)
Residence time in a semi-enclosed domain from the solution of an adjoint problem
Delhez, Eric; Heemink, Arnold W.; Deleersnijder, Eric
2004In Estuarine Coastal and Shelf Science, 61 (4), p. 691-702
Peer Reviewed verified by ORBi
 

Files


Full Text
Residence time adjoint.pdf
Publisher postprint (392.45 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
advection-diffusion; diagnostic; adjoint modeling; North Sea; residence time
Abstract :
[en] The residence time measures the time spent by a water parcel or a pollutant in a given water body and is therefore a widely used concept in environmental studies. While many previous studies rely on severe hypotheses (assuming stationarity of the flow and/or neglecting diffusion) to evaluate the residence time, the paper introduces a general method for computing the residence time and/or the mean residence time without such simplifying hypotheses. The method is based on the resolution of an adjoint advection-diffusion problem and is therefore primarily meant to be used with numerical models. The method and its implications are first introduced using a simplified one-dimensional analytical model. The approach is then applied to the diagnostic of the three-dimensional circulation on the Northwest European Continental Shelf. (C) 2004 Elsevier Ltd. All rights reserved.
Disciplines :
Aquatic sciences & oceanology
Earth sciences & physical geography
Author, co-author :
Delhez, Eric ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mathématiques générales
Heemink, Arnold W.;  Delft University of Technology > Applied Mathematical Analysis
Deleersnijder, Eric;  Université Catholique de Louvain-La-Neuve > Unité ASTR
Language :
English
Title :
Residence time in a semi-enclosed domain from the solution of an adjoint problem
Publication date :
2004
Journal title :
Estuarine Coastal and Shelf Science
ISSN :
0272-7714
eISSN :
1096-0015
Publisher :
Academic Press, London, United Kingdom
Volume :
61
Issue :
4
Pages :
691-702
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 18 December 2008

Statistics


Number of views
95 (19 by ULiège)
Number of downloads
14 (12 by ULiège)

Scopus citations®
 
147
Scopus citations®
without self-citations
119
OpenCitations
 
126
OpenAlex citations
 
158

Bibliography


Similar publications



Contact ORBi