[en] Research interest in the thermo-mechanical behaviour of unsaturated soils is growing as a result of an increasing number of geomechanical problems involving both thermal and unsaturated effects. A new constitutive model dealing with partially saturated soils under non-isothermal conditions is presented through a unified and highly coupled constitutive approach. In the context of the elasto-thermoplasticity and the critical state theory, the so-called ACMEG-TS model uses the concepts of multi-mechanism and bounding surface theory. The generalized effective stress framework is adopted to represent the stress state in the soil. This model brings advancements on the thermo-hydraulic couplings that directly affect the mechanical behaviour of the materials. The constitutive relations based on the evolutions of the two key parameters (the reconsolidation
pressure and the air-entry suction) make it possible to reproduce the main features of the thermo-mechanical behaviour of unsaturated soils. Theoretical aspects of the paper are supported by comparisons between numerical simulations and experimental results extracted from literature.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.