structural dynamics; implicit; explicit; time integration; energy conserving
Abstract :
[en] Recent developments have proved the advantage of combining both time implicit and time explicit integration algorithms in structural dynamics. A major problem is to define the initial conditions for the implicit simulation on the basis of a solution obtained from an unbalanced explicit resolution. The unbalanced nature of the explicit algorithm leads to oscillations in the fields of interest. Therefore, the values obtained after an explicit computation cannot be used directly as initial conditions for an implicit simulation. In this paper, we develop such initial values that lead to a stable (no numerical creation of energy) and energy-conserving transition. (c) 2005 Elsevier B.V. All rights reserved.
Disciplines :
Mechanical engineering
Author, co-author :
Noels, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS - Milieux continus et thermomécanique
Stainier, Laurent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS - Milieux continus et thermomécanique
Ponthot, Jean-Philippe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
Energy conserving balance of explicit time steps to combine implicit and explicit algorithms in structural dynamics
Publication date :
2006
Journal title :
Computer Methods in Applied Mechanics and Engineering
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
T. Belytschko T. Hughes Computational Methods for Transient Analysis 1983 North Holland
T. Hughes The Finite Element Method 1987 Prentice Hall
M. Géradin D. Rixen Mechanical vibrations Theory and Applications to Structural Dynamics 1994 John Wiley & Sons Paris
G. Hulbert J. Chung Explicit time integration algorithms for structural dynamics with optimal numerical dissipation Comput. Methods Appl. Mech. Engrg. 137 1996 175-188
D.J. Benson Stable time step estimation for multi-material Eulerian hydrocodes Comput. Methods Appl. Mech. Engrg. 167 1998 191-205
N. Newmark A method of computation for structural dynamics J. Eng. Mech. Div. ASCE 85 EM3 1959 67-94
J. Chung G. Hulbert A time integration algorithms for structural dynamics with improved numerical dissipations: The generalized-α method J. Appl. Mech. 60 1993 371-375
M. Géradin A. Cardona Flexible multibody dynamics A Finite Element Approach 2000 John Wiley & Sons
D. Yang D. Jung I. Song D. Yoo J. Lee Comparative investigation into implicit, explicit, and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes J. Mater. Process. Technol. 50 1995 39-53
J. Gelin L. Boulmane P. Boisse Quasi-static implicit and transient explicit analyses of sheet-metal forming using a C0 three-nodes shell element J. Mater. Process. Technol. 50 1995 54-69
J. Sun K. Lee K. Lee Comparison of implicit and explicit finite element methods for dynamic problem J. Mater. Process. Technol. 105 2000 110-118
W. Rust K. Schweizerhof Finite element limit load analysis of thin-walled structures by ANSYS (implicit), LS-DYNA (explicit) and in combination Thin-Walled Struct. 41 2003 227-244
J.-P. Ponthot M. Hogge On relative merits of implicit schemes for transient problems in metal forming simulation B. Kröplin E. Luckey International Conference on Numerical Methods for Metal Forming in Industry vol. 2 1994 Baden-Baden Germany 128-148
M. Hogge, J.-P. Ponthot, Efficient implicit schemes for transient problems in metal forming simulation, in: NUPHYMAT'96, Numerical and Physical Study of Material Forming Processes (CEMEF-Ecole nationale supèrieure des mines de Paris Sophia-Antipolis, France, 1996).
M. Finn P. Galbraith L. Wu J. Hallquist L. Lum T.-L. Lin Use of a coupled explicit-implicit solver for calculating spring-back in automotive body panels J. Mater. Process. Technol. 50 1995 395-409
N. Narkeeran M. Lovell Predicting springback in sheet metal forming: An explicit to implicit sequential solution procedure Finite Elements Anal. Des. 33 1999 29-42
L. Noels L. Stainier J.-P. Ponthot J. Bonini Combined implicit-explicit algorithms for non-linear structural dynamics Revue Eur. des Elements-Finis 11 2002 565-591
L. Noels, L. Stainier, J.-P. Ponthot, Combined implicit/explicit algorithms for crashworthiness analysis, Int. J. Impact Engrg.
L. Noels L. Stainier J.-P. Ponthot Combined implicit/explicit time integration algorithms for the numerical simulation of sheet metal forming J. Comput. Appl. Math. 168 2004 331-339
J. Simo N. Tarnow The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics J. Appl. Math. Phys. (ZAMP) 43 1992 757-792
D. Jung D. Yang Step-wise combined implicit-explicit finite-element simulation of autobody stamping process J. Mater. Process. Technol. 83 1998 245-260
D. Flanagan T. Belytschko Eigenvalues and stable time steps for the uniform strain hexahedron and quadrilateral J. Appl. Mech. 51 1984 35-40
L. Noels L. Stainier J.-P. Ponthot Self-adapting time integration management in crash-worthiness and sheet metal forming computations Int. J. Vehicle Des. 30 2 2002 1-48
W. Daniels A partial velocity approach to subcycling structural dynamics Comput. Methods Appl. Mech. Engrg. 192 2003 375-394
J. Simo N. Tarnow K. Wong Exact energy-momentum conserving algorithms and sympletic schemes for nonlinear dynamics Comput. Methods Appl. Mech. Engrg. 100 1992 63-116
O. Gonzalez J. Simo On the stability of sympletic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry Comput. Methods Appl. Mech. Engrg. 134 1996 197-222
O. Gonzalez Mechanical systems subject to holonomic constraints: Differential-algebraic formulations and conservative integration Physica D 132 1999 165-174
J. Simo O. Gonzalez Recent results on the numerical integration of infinite-dimensional Hamiltonian system T. Hughes E. Onate O. Zienkiewicz Recent Developments in Finite Element Analysis 1994 CIMNE Barcelona, Spain 255-271
T. Laursen X. Meng A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics Comput. Methods Appl. Mech. Engrg. 190 2001 6309-6322
O. Gonzalez Exact energy and momentum conserving algorithms for general models in nonlinear elasticity Comput. Methods Appl. Mech. Engrg. 190 2000 1763-1783
X. Meng T. Laursen Energy consistent algorithms for dynamic finite deformation plasticity Comput. Methods Appl. Mech. Engrg. 191 2001 1639-1675
X. Meng T. Laursen On energy consistency of large deformation plasticity models, with application to the design of unconditionally stable time integrators Finite Elements Anal. Des. 38 2002 949-963
L. Noels L. Stainier J.-P. Ponthot Energy-momentum conserving algorithm for non-linear hypoelastic constitutive models Int. J. Numer. Methods Engrg. 59 2004 83-114
L. Noels L. Stainier J.-P. Ponthot On the use of large time steps with an energy-momentum conserving algorithm for non-linear hypoelastic constitutive models Int. J. Solids Struct. 41 2004 663-693
J.-P. Ponthot Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes Int. J. Plasticity 18 2002 91-126
M. Wilkins, Calculation of elastoplastic flows, in: B. Alder (Eds.), Methods of Comput. Phys., 1964, pp. 211-263 (Chapter 3).
M. Maenchen, S. Sack, The Tensor code, in: B. Alder (Eds.), Methods of Comput. Phys., 1964, pp. 387-400 (Chapter 3).
J. Simo T. Hughes Computational Inelasticity 1998 Springer
F. Armero I. Romero On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. Part I: Low-order methods for two model problems and nonlinear elastodynamics Comput. Methods Appl. Mech. Engrg. 190 2001 2603-2649
F. Armero I. Romero On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. Part II: Second-order methods Comput. Methods Appl. Mech. Engrg. 190 2001 6783-6824
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.