[en] A variant of the generalized-alpha scheme is proposed for constrained mechanical systems represented by index-3 DAEs. Based on the analogy with linear multistep methods, an elegant convergence analysis is developed for this algorithm. Second-order convergence is demonstrated both for the generalized coordinates and the Lagrange multipliers, and those theoretical results are illustrated by numerical tests.
Disciplines :
Physique Ingénierie mécanique
Auteur, co-auteur :
Arnold, Martin; Martin Luther University Halle > NWF III - Institute of Mathematics
Bruls, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures
Langue du document :
Anglais
Titre :
Convergence of the generalized-alpha scheme for constrained mechanical systems
Arnold, M.: A perturbation analysis for the dynamical simulation of mechanical multibody systems. Appl. Numer. Math. 18, 37-56 (1995)
Arnold, M.: Simulation algorithms and software tools. In: Mastinu, G., Plöchl, M. (eds.) Road and Off-road Vehicle System Dynamics Handbook. Taylor & Francis, London (2007, in preparation)
Bottasso, C., Dopico, D., Trainelli, L.: On the optimal scaling of index three DAEs in multibody dynamics. In: Proc. of the European Conference on Computational Mechanics (ECCOMAS-ECCM), Lisbon, Portugal (2006)
Brenan, K., Campbell, S., Petzold, L.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2nd edn. SIAM, Philadelphia (1996)
Bruls, O., Arnold, M.: The generalized-α scheme as a multistep integrator: Towards a general mechatronic simulator. In: Proc. of the IDETC/MSNDC Conference, Las Vegas, USA (2007)
Bruls, O., Golinval, J.C.: The generalized-α method in mechatronic applications. Z. Angew. Math. Mech. (ZAMM) 86, 748-758 (2006)
Bruls, O., Golinval, J.C.: On the numerical damping of time integrators for coupled mechatronic systems. Comput. Meth. Appl. Mech. Eng. (2006), accepted for publication
Cardona, A., Géradin, M.: Time integration of the equations of motion in mechanism analysis. Comput. Struct. 33, 801-820 (1989)
Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. ASME J. Appl. Mech. 60, 371-375 (1993)
Erlicher, S., Bonaventura, L., Bursi, O.: The analysis of the generalized-α method for non-linear dynamic problems. Comput. Mech. 28, 83-104 (2002)
Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001)
Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations I-Nonstiff Problems, 2nd edn. Springer, New York (1993)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II-Stiff and Differential-Algebraic Problems, 2nd edn. Springer, New York (1996)
Hilber, H., Hughes, T., Taylor, R.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283-292 (1977)
Jay, L., Negrut, D.: Extensions of the HHT-method to differential- algebraic equations in mechanics. Electron. Trans. Numer. Anal. 26, 190-208 (2007)
Lunk, C., Simeon, B.: Solving constrained mechanical systems by the family of Newmark and α-methods. Z. Angew. Math. Mech. (ZAMM) 86(10), 772-784 (2006)
Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On the use of the HHT method in the context of index 3 differential algebraic equations of multi-body dynamics. In: Goicolea, J., Cuadrado, J., García Orden, J. (eds.) Proc. of the ECCOMAS Conf. on Advances in Computational Multibody Dynamics, Madrid, Spain (2005)
Newmark, N.: A method of computation for structural dynamics. ASCE J. Eng. Mech. Div. 85, 67-94 (1959)
Schiehlen, W. (ed.): Multibody Systems Handbook. Springer, Berlin (1990)