Virtual prototyping; Motion and vibration control; Flexible multibody systems; Model reduction
Abstract :
[en] This paper discusses the integrated design of mechatronic systems with varying dynamics, such as serial and parallel machine tools. This characteristic affects the machine stability and performance. A computer-aided integrated design methodology is proposed and validated on a pick-and-place robot. It consists of two main steps: (i) the derivation of reduced models from a flexible multibody model and (ii) the systematic robust control design. Eventually, the integrated design of the system, considering both structural and control parameters, can be performed.
Disciplines :
Mechanical engineering
Author, co-author :
da Silva, Maira M; Katholieke Universiteit Leuven, Department of Mechanical Engineering
Bruls, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques
Swevers, Jan; Katholieke Universiteit Leuven, Department of Mechanical Engineering
Desmet, Wim; Katholieke Universiteit Leuven, Department of Mechanical Engineering
Van Brussel, Hendrik; Katholieke Universiteit Leuven, Department of Mechanical Engineering
Language :
English
Title :
Computer-aided integrated design for machines with varying dynamics
Van Brussel H., Sas P., Németh I., De Fonseca P., and Van den Braembussche P. Towards a mechatronic compiler. IEEE/ASME Transactions on Mechatronics 6 1 (2001) 90-105
Rieber J.M., and Taylor D.G. Integrated control system and mechanical design of a compliant two-axes mechanism. Mechatronics 14 9 (2004) 1069-1087
Symens W., Van Brussel H., and Swevers J. Gain-scheduling control of machine tools with varying structural flexibilities. Annals of the CIRP 53 1 (2004) 321-324
B. Paijmans, W. Symens, H. Van Brussel, J. Swevers, A gain-scheduling control technique for mechatronic systems with position-dependent dynamics, in: Proceedings of American Control Conference, Minneapolis, USA, June 14-16, 2006.
Van Amerongen J., and Breedveld P. Modelling of physical systems for the design and control of mechatronic systems. Annual Reviews in Control 27 (2003) 87-117
De Oliveira L.P.R., Da Silva M.M., Sas P., Van Brussel H., and Desmet W. Concurrent mechatronic design approach for active control of cavity noise. Journal of Sound and Vibration 314 3-5 (2008) 507-525
da Silva M.M., Desmet W., and Van Brussel H. Design of mechatronic systems with configuration-dependent dynamics: simulation and optimization. IEEE/ASME Transactions on Mechatronics 13 6 (2008) 638-646
M.M. da Silva, W. Desmet, H. Van Brussel, Towards a concurrent optimization of mechatronic systems with configuration-dependent dynamics, in: Proceedings of the 12th IFToMM World Congress, Besançon, June 18-21, 2007, pp. 1-6.
Davliakos I., and Papadopoulos E. Model-based control of a 6-dof electrohydraulic Stewart-Gough platform. Mechanism and Machine Theory 43 11 (2008) 1385-1400
Wang X., and Mills J.K. Dynamic modeling of a flexible-link planar parallel platform using substructuring approach. Mechanism and Machine Theory 41 (2006) 671-687
R.R. Craig, A review of time domain and frequency domain component mode synthesis methods, in: Proceedings of the Joint Mechanics Conference, Albuquerque, USA, June 24-26, 1985, pp. 1-30.
Tosatti L.M., Bianchi G., Fassi I., Boër C.R., and Jovane F. An integrated methodology for design of parallel kinematic machines (PKM). Annals of CIRP 46 2 (1997) 341-345
Zhang D., Wang L., and Lang S.Y.T. Parallel kinematic machines: design, analysis and simulation in an integrated virtual environment. Journal of Mechanical Design 127 (2005) 580-588
da Silva M.M., Brüls O., Paijmans B., Desmet W., and Van Brussel H. Computer-aided integrated design for mechatronic systems with varying dynamics. In: Ulbrich H., and Ginzinger L. (Eds). Motion and Vibration Control, Selected Papers from MOVIC 2008 (2008), Springer, The Netherlands 53-62
Antoulas A.C., and Sorensen D.C. Approximation of large-scale dynamical systems: an overview. International Journal of Applied Mathematics and Computer Science 11 5 (2001) 1093-1121
Brüls O., Duysinx P., and Golinval J.-C. The Global Modal Parameterization for non-linear model-order reduction in flexible multibody dynamics. International Journal of Numerical Methods in Engineering 69 (2007) 948-977
Gahinet P.A., Nemirovky A., Laub A., and Chilali M. LMI Control Toolbox. first ed. (1995), The MathWorks Inc.
Astrom K.J., and Wittenmark B. Adaptive Control (1994), Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA
Van de Wal M., Van Baars G., Sperling F., and Bosgra O. Multivariable H∞ / μ feedback control design for high precision waferstage motion. Control Engineering Practice 10 7 (2002) 739-755
Paijmans B., Symens W., Van Brussel H., and Swevers J. Identification of interpolating affine LPV models for mechatronic systems with one varying parameter. European Journal of Control 14 1 (2008) 16-29
Wasfy T., and Noor A. Computational strategies for flexible multibody systems. Applied Mechanics Review 56 (2003) 553-613
Géradin M., and Cardona A. Flexible Multibody Dynamics: A Finite Element Approach. first ed. (2001), John Wiley and Sons, England
Samin J.C., Brüls O., Collard J.F., Sass L., and Fisette P. Multiphysics modeling and optimization of mechatronic multibody systems. Multibody System Dynamics 18 3 (2007) 345-373
Brüls O., and Golinval J.-C. The generalized-α method in mechatronic applications. Journal of Applied Mathematics and Mechanics 86 10 (2006) 748-758
Cardona A., Klapka I., and Geradin M. Design of a new finite element programming environment. Engineering Computations 11 4 (1994) 365-381
P. Astrid, Fast reduced order modeling technique for large scale LTV systems, in: Proceedings of the 2004 American Control Conference, Boston Massachusetts, EUA, June 30 to July 2, 2004, pp. 762-767.
Farhoodand M., and Dullerud G.E. On the balanced truncation of LTV systems. IEEE Transactions on Automatic Control 51 2 (2006) 315-320
Sandberg H. A case study in model reduction of linear time-varying systems. Automatica 42 3 (2006) 467-472
Junga H.K., Crane C.D., and Roberts R.G. Stiffness mapping of compliant parallel mechanisms in a serial arrangement. Mechanism and Machine Theory 43 3 (2008) 271-284
Majou F., Gosselin C., Wenger P., and Chablat D. Parametric stiffness analysis of the Orthoglide. Mechanism and Machine Theory 42 3 (2007) 296-311
Skogestad S., and Postlethwaite I. Multivariable Feedback Control: Analysis and Design (1997), Wiley Publishers, England
B. Paijmans, Interpolating gain-scheduling control for mechatronic systems with parameter-dependent dynamics, Ph.D. Thesis, Katholieke Universiteit Leuven, 2007.
Amato F., Mattei M., and Pironti A. Gain scheduled control for discrete-time systems depending on bounded rate parameters. International Journal of Robust and Nonlinear Control 15 (2005) 473-494