[en] This paper addresses an advanced and unified thermomechanical constitutive model for soils. Based on experimental evidence showing the nonlinear and irreversible thermomechanical responses of saturated soils, the constitutive equations of the developed model, Advanced Constitutive Model for Environmental Geomechanics-Thermal effect (ACMEG-T), are presented. In the context of elastoplasticity and critical state theory, the model uses the multimechanism plasticity and bounding surface theory. Nonlinear thermoelasticity is joined with two coupled thermoplastic dissipative processes. The yield functions, the dissipative potentials and the plastic multipliers are introduced. Attention is particularly focused on the coupling between both plastic mechanisms, an isotropic and a deviatoric one, which are in agreement with the consistency condition for multiple dissipation. As far as isotropic mechanism is concerned, a unique thermomechanical yield surface reproduces the thermoplasticity observed at low and intermediate overconsolidation ratios, as well as the plasticity under mechanical loading in an framework unifying mechanical and thermal hardenings. Finally, the efficiency of ACMEG-T is proven by validation tests on drained and undrained thermomechanical paths.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abuel-Naga, H. M., Bergado, D. T., and Bouazza, A. (2007). "Thermally induced volume change and excess pore water pressure of soft Bangkok clay." Eng. Geol. (Amsterdam) EGGOAO0013-7952, 89(1-2), 144-154. 10.1016/j.enggeo.2006.10.002
Abuel-Naga, H. M., Bergado, D. T., Ramana, G. V., Grino, L., Rujivipat, P., and Thet, Y. (2006). "Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature." J. Geotech. Geoenviron. Eng. JGGEFK1090-0241, 132(7), 902-910. 10.1061/ (ASCE)1090-0241(2006)132:7(902)
Brandl, H. (2006). "Energy foundations and other thermo-active ground structures." Geotechnique GTNQA80016-8505, 56(2), 81-122. 10.1680/geot.2006.56.2.81
Burger, A., Recordon, E., Bovet, D., Cotton, L., and Saugy, B. (1985). "Thermique des nappes souterraines." Presses polytechniques universitaires romandes, PPUR, Lausanne, Switzerland.
Campanella, R., and Mitchell, J. (1968). "Influence of temperature on soil behavior." J. Soil Mech. and Found. Div. JSFEAQ0044-7994, 94, 709-734.
Cekerevac, C., and Laloui, L. (2004). "Experimental study of the thermal effects on the mechanical behaviour of a clay." Int. J. Numer. Analyt. Meth. Geomech. IJNGDZ0363-9061, 28, 209-228. 10.1002/ nag.332
Cui, Y. J., Sultan, N., and Delage, P. (2000). "A thermomechanical model for saturated clays." Can. Geotech. J. CGJOAH0008-3674, 37, 607-620. 10.1139/cgj-37-3-607
Dafalias, Y., and Herrmann, L. (1980). "A bounding surface soil plasticity model." Proc., Int. Symp. Soils under Cyclic Transient Loading, G. N. Pande and O. C. Zienkiewicx, eds., Balkema, Rotterdam, 335-345.
Eriksson, L. G. (1989). "Temperature effects on consolidation properties of sulphide clays." Proc., 12th Int. Conf. on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Balkema, Rotterdam, Brookfield, 2087-2090.
Hueckel, T., and Borsetto, M. (1990). "Thermo-plasticity of saturated soils and shales: Constitutive equations." J. Geotech. Engrg. JGENDZ0733-9410, 116(12), 1778-1796. 10.1061/ (ASCE)0733-9410(1990)116:12(1778)
Hueckel, T., and Pellegrini, R. (1992). "Effective stress and water pressure in saturated clays during heating-cooling cycles." Can. Geotech. J. CGJOAH0008-3674, 29, 1095-1102. 10.1139/t92-126
Hujeux, J. C. (1979). "Calcul numérique de problèmes de consolidation élastoplastique." Ph.D. thesis, Ecole Centrale de Paris, Paris.
Jamin, F. (2003). "Contribution à l'étude du transport de matière et de la rhéologie dans les sols non saturés à différentes températures." Ph.D. thesis, Université Montpellier II, Montpellier, France.
Koiter, W. T. (1960). "General theorems for elastic-plastic solids." Progress in solid mechanics, I. N. Sneddon and R. Hill, eds., North-Holland, Amsterdam, The Netherlands, 167-221.
Laloui, L. (1993). "Modélisation du comportement thermo-hydro-mécanique des milieux poreux anélastique." Ph.D. thesis, Ecole Centrale de Paris, Paris.
Laloui, L., and Cekerevac, C. (2003). "Thermo-plasticity of clays: An isotropic yield mechanism." Comput. Geotech. ZZZZZZ0266-3524, 30(8), 649-660. 10.1016/j.compgeo.2003.09.001
Laloui, L., and Cekerevac, C. (2008a). "Non-isothermal plasticity model for cyclic behaviour of soils." Int. J. Numer. Analyt. Meth. Geomech. IJNGDZ0363-9061, 32(5), 437-460.
Laloui, L., and Cekerevac, C. (2008b). "Numerical simulation of the non-isothermal mechanical behaviour of soils." Comput. Geotech. ZZZZZZ0266-3524, 35(5), 729-745.
Laloui, L., and Modaressi, H. (2002). "Modelling of the thermo-hydro-plastic behaviour of clays." Hydromechanical and thermohydromechanical behaviour of deep argillaceous rock, Balkema, Rotterdam, The Netherlands, 161-170.
Laloui, L., Moreni, M., and Vulliet, L. (2003). "Behavior of a dual-purpose pile as foundation and heat exchanger." Can. Geotech. J. CGJOAH0008-3674, 40(2), 388-402. 10.1139/t02-117
Laloui, L., Nuth, M., and Vulliet, L. (2006). "Experimental and numerical investigations of the behaviour of a heat exchanged pile." Int. J. Numer. Analyt. Meth. Geomech. IJNGDZ0363-9061, 30, 763-781. 10.1002/nag.499
Lewis, R. W., and Schrefler, B. A. (1987). The finite element method in the deformation and consolidation of porous media, Wiley, New York.
Mandel, W. (1965). "Généralisation de la théorie de Koiter." Int. J. Solids Struct. IJSOAD0020-7683, 1, 273-295. 10.1016/0020-7683(65)90034-X
Mitchell, J. K. (1976). Fundamentals of soil behavior, Wiley, New York.
Mitchell, J. K., McMillan, J., Green, S., and Sisson, R. (1982). "Field testing of cable backfill systems." Underground cable thermal backfill, Pergamon, New York, 19-33.
Modaressi, H., and Laloui, L. (1997). "A thermo-viscoplastic constitutive model for clays." Int. J. Numer. Analyt. Meth. Geomech. IJNGDZ0363-9061, 21(5), 313-315. 10.1002/ (SICI)1096-9853(199705)21:5<313::AID-NAG872>3.0.CO;2-5
Moritz, L. (1995). "Geotechnical properties of clay at elevated temperatures." Swed. Geotech. Inst., 47.
Prager, W. (1958). "Non-isothermal plastic deformation." Proc., Section of Sciences-B, Vol. 61, Koninlijke Nederlandse Akademie van Wetenschapen, 176-182.
Rizzi, E., Maier, G., and Willam, K. (1996). "On failure indicators in multi-dissipative materials." Int. J. Solids Struct. IJSOAD0020-7683, 33(20-22), 3187-3214. 10.1016/0020-7683(95)00247-2
Roscoe, K. H., and Burland, J. B. (1968). "On the generalized stress-strain behaviour of 'wet' clay." Engineering plasticity, J. Heyman and F. A. Leckie, eds., Cambridge University Press, Cambridge, England, 535-609.
Tidfors, M., and Sällfors, G. (1989). "Temperature effect on preconsolidation pressure." Geotech. Test. J. GTJODJ0149-6115, 12, 93-97. 10.1520/GTJ10679J
Vulliet, L., Laloui, L., and Schrefler, B. (2002). Environmental geomechanics, EPFL, Lausanne, Switzerland.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.