Abstract :
[en] Objectives: To describe the population pharmacokinetics of temocillin administered via continuous versus intermittent infusion in critically ill patients with pneumonia. Secondary objectives included characterization of epithelial lining fluid (ELF)/plasma penetration ratios and determination of the probability of target attainment (PTA) for a range of MICs. Methods: Thirty-two mechanically ventilated patients who were treated for pneumonia with 6g of temocillin daily for in vitro sensitive pathogens were assigned either to the II (2g every 8h over 0.5h) or to the CI (6g over 24h after a loading dose of 2g) group. A population pharmacokinetic model was developed using unbound plasma and total ELF concentrations of temocillin and related Monte Carlo simulations were performed to assess PTAs. Results: The AUC(0-24) ELF/plasma penetration ratio was 0.73, at steady-state, for both modes of infusion and whatever the level of creatinine clearance. Monte Carlo simulations showed for the minimal pharmacodynamic (PD) targets of 50% T> 1X MIC (II group) and 100% T > 1X MIC (CI group), PK/PD breakpoints of 4 mg/L in plasma and 2 mg/L in ELF and 4mg/L in plasma and ELF, respectively. The breakpoint was 8 mg/L in ELF for both modes of infusion in patients with CL(CR)<60mL/min. Conclusion: While CI provides better PKPD indexes, the latter remain below available recommendations for systemic infections, except in case of moderate renal impairment, thereby warranting future clinical studies in order to determine the efficacy of temocillin in severe pneumonia.
Scopus citations®
without self-citations
16