eddy covariance; energy balance; evapotranspiration; heat flux; net carbon uptake; water-use efficiency
Abstract :
[en] Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO(2) exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004-2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO(2) uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Graf, Alexander
Klosterhalfen, Anne
Arriga, Nicola
Bernhofer, Christian
Bogena, Heye
Bornet, Frédéric
Brüggemann, Nicolas
Brümmer, Christian
Buchmann, Nina
Chi, Jinshu
Chipeaux, Christophe
Cremonese, Edoardo
Cuntz, Matthias
Dušek, Jiří
El-Madany, Tarek S.
Fares, Silvano
Fischer, Milan
Foltýnová, Lenka
Gharun, Mana
Ghiasi, Shiva
Gielen, Bert
Gottschalk, Pia
Grünwald, Thomas
Heinemann, Günther
Heinesch, Bernard ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges
Heliasz, Michal
Holst, Jutta
Hörtnagl, Lukas
Ibrom, Andreas
Ingwersen, Joachim
Jurasinski, Gerald
Klatt, Janina
Knohl, Alexander
Koebsch, Franziska
Konopka, Jan
Korkiakoski, Mika
Kowalska, Natalia
Kremer, Pascal
Kruijt, Bart
Lafont, Sebastien
Léonard, Joël
De Ligne, Anne ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges
Longdoz, Bernard ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges
Ciais P, et al., 2005 Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529-533. (doi:10.1038/nature03972)
Reichstein M, et al., 2007 Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Glob. Change Biol. 13, 634-651. (doi:10.1111/j.1365-2486.2006.01224.x)
Lorenzini G, Nali C, Pellegrini E,. 2014 Summer heat waves, agriculture, forestry and related issues: an introduction (Editorial). Agrochimica 58, 3-19.
Copernicus Climate Change Service. 2019. European State of the Climate 2018. See https://climate.copernicus.eu/ESOTC/2018.
Copernicus Climate Change Service. 2020. European State of the Climate 2019. See https://climate.copernicus.eu/ESOTC/2019.
Gourlez de la Motte L, et al,. 2020 Non-stomatal processes reduce gross primary productivity in temperate forest ecosystems during severe edaphic drought. Phil. Trans. R. Soc. B 375, 20190527. (doi:10.1098/rstb.2019.0527)
Teuling AJ, et al., 2010 Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722-727. (doi:10.1038/ngeo950)
Swinbank WC,. 1951 The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J. Meteorol. 8, 135-145. (doi:10.1175/1520-0469(1951)008<0135:tmovto>2.0.co;2)
Drought 2018 Team and ICOS Ecosystem Thermatic Centre 2020. Drought-2018 ecosystem eddy covariance flux product for 52 stations in FLUXNET-Archive format. (doi:10.18160/YVRO-4898)
Franz D, et al., 2018 Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems: a review. Int. Agrophys. 32, 439. (doi:10.1515/intag-2017-0039)
Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid H-P, Schmidt M, Steinbrecher R,. 2013 A quality assessment strategy for long-term eddy-covariance measurements. Agric. For. Meteorol. 169, 122-135. (doi:10.1016/j.agrformet.2012.09.006)
Sabbatini S, et al., 2018 Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations. Int. Agrophys. 32, 495. (doi:10.1515/intag-2017-0043)
Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Sigut L, Menzer O, Reichstein M,. 2018 Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15, 5015-5030. (doi:10.5194/bg-15-5015-2018)
Blanken PD, Black TA, Yang PC, Neumann HH, Nesic Z, Staebler R, den Hartog G, Novak MD, Lee X,. 1997 Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. J. Geophys. Res. Atmos. 102, 28 915-28 927. (doi:10.1029/97jd00193)
Meyers TP, Hollinger SE,. 2004 An assessment of storage terms in the surface energy balance of maize and soybean. Agric. For. Meteorol. 125, 105-115. (doi:10.1016/j.agrformet.2004.03.001)
Eshonkulov R, Poyda A, Ingwersen J, Wizemann HD, Weber TKD, Kremer P, Hogy P, Pulatov A, Streck T,. 2019 Evaluating multi-year, multi-site data on the energy balance closure of eddy-covariance flux measurements at cropland sites in southwestern Germany. Biogeosciences 16, 521-540. (doi:10.5194/bg-16-521-2019)
Oncley SP, et al., 2007 The energy balance experiment EBEX-2000. Part I: overview and energy balance. Bound.-Layer Meteor. 123, 1-28. (doi:10.1007/s10546-007-9161-1)
Leuning R, van Gorsel E, Massman WJ, Isaac PR,. 2012 Reflections on the surface energy imbalance problem. Agric. For. Meteorol. 156, 65-74. (doi:10.1016/j.agrformet.2011.12.002)
Allen RG, Pereira LS, Raes D, Smith M., 1998 Crop evapotranspiration: guidelines for computing crop water requirements, 300 p. Rome, Italy: FAO.
Thornthwaite CW,. 1948 An approach toward a rational classification of climate. Geogr. Rev. 38, 55-94. (doi:10.2307/210739)
Buras A, Rammig A, Zang CS,. 2019 Quantifying impacts of the drought 2018 on European ecosystems in comparison to 2003. Biogeosci. Discuss. 2019, 1-23. (doi:10.5194/bg-2019-286)
Vicente-Serrano SM, Begueria S, Lorenzo-Lacruz J, Camarero JJ, Lopez-Moreno JI, Azorin-Molina C, Revuelto J, Moran-Tejeda E, Sanchez-Lorenzo A,. 2012 Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 16, 1-27. (doi:10.1175/2012ei000434.1)
Bastos A, et al., 2020 Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Science Advances 6, eaba2724. (doi:10.1126/sciadv.aba2724)
Vicente-Serrano SM, Begueria S., 2020. SPEI Global drought monitor. See https://spei.csic.es/map/maps.html.
Stoy PC, et al,. 2013 A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agric. For. Meteorol. 171-172, 137-152. (doi:10.1016/j.agrformet.2012.11.004).
Wilson K, et al., 2002 Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 113, 223-243. (doi:10.1016/s0168-1923(02)00109-0)
Foken T, Aubinet M, Finnigan JJ, Leclerc MY, Mauder M, Paw UKT,. 2011 Results of a panel discussion about the energy balance closure correction for trace gases. Bull. Am. Meteorol. Soc. 92, ES13-ES18. (doi:10.1175/2011BAMS3130.1)
Budyko MI,. 1974 Climate and life. New York, NY: Academic Press.
Williams CA, et al., 2012 Climate and vegetation controls on the surface water balance: synthesis of evapotranspiration measured across a global network of flux towers. Water Resour. Res. 48, W06523. (doi:10.1029/2011wr011586)
Nijp JJ, Metselaar K, Limpens J, Bartholomeus HM, Nilsson MB, Berendse F, van der Zee S,. 2019 High-resolution peat volume change in a northern peatland: spatial variability, main drivers, and impact on ecohydrology. Ecohydrology 12, 17. (doi:10.1002/eco.2114)
Wolf S, et al., 2013 Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland. Environ. Res. Lett. 8, 12. (doi:10.1088/1748-9326/8/3/035007)
Teuling AJ, et al., 2013 Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071-2075. (doi:10.1002/grl.50495)
Kabat P, et al,. 2004. Vegetation, water, humans and the climate: a new perspective on an Interactive system. Dordrecht, The Netherlands: Springer.
Betts RA,. 2000 Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187-190. (doi:10.1038/35041545)
Rotenberg E, Yakir D,. 2010 Contribution of semi-arid forests to the climate system. Science 327, 451-454. (doi:10.1126/science.1179998)
Ramonet M, et al., 2020 The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO 2 measurements. Phil. Trans. R. Soc. B 375, 20190513. (doi:10.1098/rstb.2019.0513)
Thompson RL, et al., 2020 Changes in net ecosystem exchange over Europe during the 2018 drought based on atmospheric observations. Phil. Trans. R. Soc. B 375, 20190512. (doi:10.1098/rstb.2019.0512)
Wohlfahrt G, et al., 2018 Sun-induced fluorescence and gross primary productivity during a heat wave. Sci. Rep. 8, 9. (doi:10.1038/s41598-018-32602-z)
Stoy PC, et al., 2019 Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences 16, 3747-3775. (doi:10.5194/bg-16-3747-2019)
Beer C, et al., 2009 Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Global Biogeochem. Cycles 23, 13. (doi:10.1029/2008gb003233)