[en] The industrial sector in Burkina Faso faces two significant energy challenges access to
efficient energy sources that are also renewable. Pyrolysis and gasification are emerging as conversion pathways that exploit available agricultural and industrial biomass. Pyrolysis has been adopted successfully, whereas gasification failed without getting beyond the experimental stage. This article
assesses potential barriers to the adoption of gasification based on interviews with the stakeholders
of the energy sector (users, NGOs, policy makers). We use pyrolysis as a benchmark to point
out the barriers to adoption. The hierarchical analysis process (AHP) method was applied to
identify the most significant barriers to the adoption of gasification. Twenty-seven barriers were
identified and prioritized in two dimensions and five categories “technical”, “economic and financial”,
“socio-cultural and organizational”, “political, governmental and institutional”, and “ecological and
geographical” barriers. The category of socio-cultural and organizational barriers emerged as the
most critical in the adoption of gasification. This category deserves special consideration to go past
the pilot installation stage and adopting this technology.
Disciplines :
Energy
Author, co-author :
Barry, Fanta ; Université de Liège - ULiège > TERRA Research Centre
Sawadogo, Marie; International Institute of Water and Environmental Engineering (Institute 2iE), Ouagadougou 01 BP 594, Burkina Faso > Laboratory of Renewable Energy and Energy Efficiency (LabEREE)
Bologo/Traoré, Maïmouna
Ouédraogo, W.K.Igor; International Institute of Water and Environmental Engineering (Institute 2iE), Ouagadougou 01 BP 594, Burkina Faso > Laboratory of Renewable Energy and Energy Efficiency (LabEREE)
Dogot, Thomas ; Université de Liège - ULiège > Département GxABT > Modélisation et développement
Language :
English
Title :
Key barriers to the adoption of biomass gasification in Burkina Faso
Publication date :
30 June 2021
Journal title :
Sustainability
eISSN :
2071-1050
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Switzerland
Beck, S.; Ribon, O.; Rieding, N. Chiffres clés de l’énergie Édition. Epsilon 2020, 2020, 1–80.
Diedhiou, A.; Ndiaye, L.; Bensakhria, A.; Sock, O. Thermochemical conversion of cashew nut shells, palm nut shells and peanut shells char with CO2 and/or and/or steam to aliment a clay brick fi ring unit. Renew. Energy 2019, 142, 581–590. [CrossRef]
Zulqarnain; Ayoub, M.; Yusoff, M.H.M.; Nazir, M.H.; Zahid, I.; Ameen, M.; Sher, F.; Floresyona, D.; Budi Nursanto, E. A comprehensive review on oil extraction and biodiesel production technologies. Sustainability 2021, 13, 788. [CrossRef]
Yaqoob, H.; Teoh, Y.H.; Jamil, M.A.; Rasheed, T.; Sher, F. An experimental investigation on tribological behaviour of tire-derived pyrolysis oil blended with biodiesel fuel. Sustainability 2020, 12, 9975. [CrossRef]
Bhattacharya, S.C. Commercialisation options for biomass energy technologies in ESCAP countries. Int. J. Energy Technol. Policy 2003, 1, 363–399. [CrossRef]
Al-Juboori, O.; Sher, F.; Khalid, U.; Niazi, M.B.K.; Chen, G.Z. Electrochemical Production of Sustainable Hydrocarbon Fuels from CO2 Co-electrolysis in Eutectic Molten Melts. ACS Sustain. Chem. Eng. 2020, 8, 12877–12890. [CrossRef]
Berahab, R. Energies Renouvelables en Afrique: Enjeux, défis et Opportunités. 2019, pp. 1–36. Available online: https://www.africaportal.org/publications/energies-renouvelables-en-afrique-enjeux-d%C3%A9fis-et-opportunit%C3 %A9s-renewable-energy-africa-issues-challenges-and-opportunities/(accessed on 2 May 2019).
Secrétariat Permanent de la Coordination des Politiques Sectorielles Agricoles. Deuxième Programme National du Secteur Rural (PNSR) 2016–2020; Secrétariat Permanent de la Coordination des Politiques Sectorielles Agricoles: Ouagadougou, Burkina Faso, 2017.
Louvel, R.; Gromard, C. De la biomasse à la bioéconomie, une stratégie énergétique pour l’Afrique? Afr. Contemp. 2017, 261–262, 223–240. [CrossRef]
Kwofie, E.M.; Ngadi, M. A review of rice parboiling systems, energy supply, and consumption. Renew. Sustain. Energy Rev. 2017, 72, 465–472. [CrossRef]
Patel, M.; Zhang, X.; Kumar, A. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renew. Sustain. Energy Rev. 2016, 53, 1486–1499. [CrossRef]
Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [CrossRef]
Sher, F.; Yaqoob, A.; Saeed, F.; Zhang, S.; Jahan, Z.; Klemeš, J.J. Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation. Energy 2020, 209, 13. [CrossRef]
Basu, P. Biomass Gasification, Pyrolysis and Torrefaction. Practical Design and Theory; Academic Press: Cambridge, MA, USA, 2013.
Makwana, J.P.; Pandey, J.; Mishra, G. Improving the properties of producer gas using high temperature gasification of rice husk in a pilot scale fluidized bed gasifier (FBG). Renew. Energy 2018. [CrossRef]
Giuliano, A.; Freda, C.; Catizzone, E. Techno-economic assessment of bio-syngas production for methanol synthesis: A focus on the water–gas shift and carbon capture sections. Bioengineering 2020, 7, 70. [CrossRef] [PubMed]
Alauddin, Z.A.B.Z.; Lahijani, P.; Mohammadi, M.; Mohamed, A.R. Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renew. Sustain. Energy Rev. 2010, 14, 2852–2862. [CrossRef]
Chang, J.; Leung, D.Y.C.; Wu, C.Z.; Yuan, Z.H. A review on the energy production, consumption, and prospect of renewable energy in China. Renew. Sustain. Energy Rev. 2003, 7, 453–468. [CrossRef]
Chang, Q.; Zhuo, S.; Meng, J.; Qin, S.; Yao, S. Clean coal technologies in China: Current status and future perspectives. Engineering 2016, 2, 447–459. [CrossRef]
Brew-Hammond, A.; Kemausuor, F. Guidebook on Modern Bioenergy Conversion Technologies in Africa; UNIDO: Vienna, Austria, 2008.
Zhang, Z.; Chen, B.; Chen, A.; Zhao, W. Barriers to commercialization development of crop straw gasification technology in China and promoting policy design. Energy Sources Part B Econ. Plan. Policy 2013, 8, 279–289. [CrossRef]
Sansaniwal, S.K.; Rosen, M.A.; Tyagi, S.K. Global challenges in the sustainable development of biomass gasification: An overview. Renew. Sustain. Energy Rev. 2017, 80, 23–43. [CrossRef]
Akbi, A. Les politiques de soutien aux biocarburants. CREDEN 2017, 33, 1–45.
Dai, J.; Cui, H.; Grace, J.R. Biomass feeding for thermochemical reactors. Prog. Energy Combust. Sci. 2012, 38, 716–736. [CrossRef]
Buragohain, B.; Mahanta, P.; Moholkar, V.S. Biomass gasification for decentralized power generation: The Indian perspective. Renew. Sustain. Energy Rev. 2010, 14, 73–92. [CrossRef]
Díaz González, C.A.; Pacheco Sandoval, L. Sustainability aspects of biomass gasification systems for small power generation. Renew. Sustain. Energy Rev. 2020, 134. [CrossRef]
Saidou, A.L. Caractérisation des Performances d’une Unité Pilote de Gazéification de Biomasse: Analyse de Faisabilité Technique, Économique et Environnementale pour une Utilisation Chez un Artisan D’une Filière Agroalimentaire au Burkina; Institut International d’Ingénierie de l’Eau et de l’Environnement: Ouagadougou, Burkina Faso, 2013; p. 83.
Chidikofan, G.F. Développement Méthodologique pour L’évaluation des Performances et de la Durabilité de Systèmes de Production D’électricité par Gazéification de Biomasse en Milieu Rural. Etude de cas au Burkina Faso; Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE)/Energie, Ouagadougou en cotutelle avec École Nationale Supérieur d’Arts et Metiers/Génie Energétique: Paris, France, 2017.
Ettorchi-Tardy, A.; Levif, M.; Michel, P. Le benchmarking: Une méthode d’amélioration continue de la qualité en santé. Prat. Organ. Soins 2011, 42, 35–46. [CrossRef]
Abu-Taha, R.; Daim, T. Multi-criteria applications in renewable energy analysis, a literature review. Res. Technol. Manag. Electr. Ind. Green Energy Technol. 2013, 60, 17–31.
Gunduz, M.; Almuajebh, M. Critical success factors for sustainable construction project management. Sustainability 2020, 12, 1990. [CrossRef]
Hamurcu, M.; Eren, T. Strategic planning based on sustainability for urban transportation: An application to decision-making. Sustainability 2020, 12, 3589. [CrossRef]
Bukari, D.; Kemausuor, F.; Quansah, D.A.; Adaramola, M.S. Towards accelerating the Deployment of decentralised renewable energy mini-grids in Ghana: Review and analysis of barriers. Renew. Sustain. Energy Rev. 2021, 135, 110408. [CrossRef]
Numata, M.; Sugiyama, M.; Mogi, G. Barrier Analysis for the Deployment of Renewable-Based Mini-Grids in Myanmar Using the Analytic Hierarchy Process (AHP). Energies 2020, 13, 1400. [CrossRef]
Karatayev, M.; Hall, S.; Kalyuzhnova, Y.; Clarke, M.L. Renewable energy technology uptake in Kazakhstan: Policy drivers and barriers in a transitional economy. Renew. Sustain. Energy Rev. 2016, 66, 120–136. [CrossRef]
Ghimire, L.P.; Kim, Y. An analysis on barriers to renewable energy development in the context of Nepal using AHP. Renew. Energy 2018, 129, 446–456. [CrossRef]
Luthra, S.; Kumar, S.; Garg, D.; Haleem, A. Barriers to renewable/sustainable energy technologies adoption: Indian perspective. Renew. Sustain. Energy Rev. 2015, 41, 762–776. [CrossRef]
Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [CrossRef]
Saaty, T.L. Fundamentals of the Analytic Hierarchy Process. In The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making; Springer: Dordrecht, The Netherlands, 2001; pp. 15–35.
Chang, C.W.; Wu, C.R.; Lin, C.T.; Chen, H.C. An application of AHP and sensitivity analysis for selecting the best slicing machine. Comput. Ind. Eng. 2007, 52, 296–307. [CrossRef]
Saaty, T. Fundamentals of Decision Making and Priority Theory, 2nd ed.; RWS Publications: Pittsburgh, PA, USA, 2000.
Saaty, T.L.; Kearns, K.P. Analytical Planning: The Organization of System; Pergamon Press: New York, NY, USA, 1985.
Keeley, A.R.; Matsumoto, K. Relative significance of determinants of foreign direct investment in wind and solar energy in developing countries—AHP analysis. Energy Policy 2018, 123, 337–348. [CrossRef]
Caupin, V.; Gravellini, J.-M.; Périou, C. L’action des bailleurs de fonds pour soutenir le développement financier en afrique: Le cas de l’agence française de développement. Rev. D’économie Financ. 2014, 4, 177–192. [CrossRef]
Negro, S.O. Dynamics of Technological Innovation Systems: The Case of Biomass Energy; Copernicus Institute for Sustainable Development and Innovation: Utrecht, The Netherlands, 2007.