Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682. 10.1016/S0016-7037(97)00001-X DOI: 10.1016/S0016-7037(97)00001-X
Ando H, Kakuda KI, Fujii H et al (2002) Growth and canopy structure of rice plants grown under field conditions as affected by Si application. Soil Sci Plant Nutr 48:429–432. 10.1080/00380768.2002.10409221
Ba NM, Dakouo D, Nacro S, Karamage F (2008) Seasonal abundance of lepidopteran stemborers and diopsid flies in irrigated fields of cultivated (Oryza sativa) and wild rice (Oryza longistaminata) in western Burkina Faso. Int J Trop Insect Sci 28:30–36 DOI: 10.1017/S1742758408930435
Babu T, Tubana B, Paye W et al (2016) Establishing soil silicon test procedure and critical silicon level for rice in Louisiana soils. Commun Soil Sci Plant Anal 47:1578–1597. 10.1080/00103624.2016.1194996 DOI: 10.1080/00103624.2016.1194996
Bandaogo AA (2014) Nitrogen use efficiency of rice as affected by the type of uear fertilizers and soil properties in Burkina Faso
Bartoli F (1983) The biogeochemical cycle of silicon in two temperate forest ecosystems. Ecol Bull 35:469–476
Bauer P, Elbaum R, Weiss IM (2011) Calcium and silicon mineralization in land plants: Transport, structure and function. Plant Sci 180:746–756. 10.1016/j.plantsci.2011.01.019 DOI: 10.1016/j.plantsci.2011.01.019
Biederman LA, Stanley Harpole W (2013) Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 5:202–214. 10.1111/gcbb.12037 DOI: 10.1111/gcbb.12037
Búrquez A (1987) Leaf thickness and water deficit in plants: A tool for field studies. J Exp Bot 38:109–114 DOI: 10.1093/jxb/38.1.109
Cooke J, Leishman MR (2012) Tradeoffs between foliar silicon and carbon-based defences: Evidence from vegetation communities of contrasting soil types. Oikos 121:2052–2060. 10.1111/j.1600-0706.2012.20057.x DOI: 10.1111/j.1600-0706.2012.20057.x
Cooke J, Leishman MR (2016) Consistent alleviation of abiotic stress with silicon addition: a meta-analysis. Funct Ecol 30:1340–1357. 10.1111/1365-2435.12713 DOI: 10.1111/1365-2435.12713
Cooke J, DeGabriel JL, Hartley SE (2016) The functional ecology of plant silicon: geoscience to genes. Funct Ecol 30:1270–1276. 10.1111/1365-2435.12711 DOI: 10.1111/1365-2435.12711
Corbineau R, Reyerson PE, Alexandre A, Santos GM (2013) Towards producing pure phytolith concentrates from plants that are suitable for carbon isotopic analysis. Rev Palaeobot Palynol 197:179–185. 10.1016/j.revpalbo.2013.06.001 DOI: 10.1016/j.revpalbo.2013.06.001
Cornelis J-T, Delvaux B (2016) Soil processes drive the biological silicon feedback loop. Funct Ecol 30:1298–1310. 10.1111/1365-2435.12704 DOI: 10.1111/1365-2435.12704
Cornelis J-T, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378. 10.1007/s11104-010-0702-x DOI: 10.1007/s11104-010-0702-x
Cornelis J-T, Dumon M, Tolossa AR et al (2014) The effect of pedological conditions on the sources and sinks of silicon in the vertic planosols in south-western ethiopia. Catena 112:131–138. 10.1016/j.catena.2013.02.014 DOI: 10.1016/j.catena.2013.02.014
Coskun D, Deshmukh R, Sonah H et al (2019) The controversies of silicon’s role in plant biology. New Phytol 221:67–85. 10.1111/nph.15343 DOI: 10.1111/nph.15343
Datnoff LE, Snyder GH, Korndörfer GH (2001) Silicon in Agriculture, vol 8
de Tombeur F, Turner BL, Laliberté E et al (2020a) Plants sustain the terrestrial silicon cycle during ecosystem retrogression. Science 369:1245–1248 DOI: 10.1126/science.abc0393
de Tombeur F, Turner BL, Laliberté E et al (2020b) Silicon dynamics during 2 million years of soil development in a coastal dune chronosequence under a Mediterranean climate. Ecosystems 23:1614-1630. 10.1007/s10021-020-00493-9
de Tombeur F, Vander Linden C, Cornélis J-T et al (2020c) Soil and climate affect foliar silicification patterns and silica-cellulose balance in sugarcane (Saccharum officinarum). Plant Soil 452:529–546. 10.1007/s11104-020-04588-z DOI: 10.1007/s11104-020-04588-z
Debona D, Rodrigues FA, Datnoff LE (2017) Silicon’s Role in Abiotic and Biotic Plant Stresses. Annu Rev Phytopathol 55:85–107. 10.1146/annurev-phyto-080516-035312 DOI: 10.1146/annurev-phyto-080516-035312
Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17. 10.1073/pnas.91.1.11 DOI: 10.1073/pnas.91.1.11
Epstein E (2009) Silicon: Its manifold roles in plants. Ann Appl Biol 155:155–160. 10.1111/j.1744-7348.2009.00343.x DOI: 10.1111/j.1744-7348.2009.00343.x
Exley C (2015) A possible mechanism of biological silicification in plants. Front Plant Sci 6:1–7. 10.3389/fpls.2015.00853 DOI: 10.3389/fpls.2015.00853
FAO (2014) Résidus agricoles et sous-produits agro-industriels en Afrique de l’Ouest
Fauteux F, Chain F, Belzile F et al (2006) The protective role of Si in the Arabidopsis-powdery mildew pathosystem. Proc Natl Acad Sci 103:17554–17559 DOI: 10.1073/pnas.0606330103
Fraysse F, Cantais F, Pokrovsky OS et al (2006) Aqueous reactivity of phytoliths and plant litter: Physico-chemical constraints on terrestrial biogeochemical cycle of silicon. J Geochemical Explor 88:202–205. 10.1016/j.gexplo.2005.08.039 DOI: 10.1016/j.gexplo.2005.08.039
Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206. 10.1016/j.chemgeo.2008.10.003 DOI: 10.1016/j.chemgeo.2008.10.003
Fraysse F, Pokrovsky OS, Meunier JD (2010) Experimental study of terrestrial plant litter interaction with aqueous solutions. Geochim Cosmochim Acta 74:70–84. 10.1016/j.gca.2009.09.002 DOI: 10.1016/j.gca.2009.09.002
Frew A, Powell JR, Sallam N et al (2016) Trade-offs between silicon and phenolic defenses may explain enhanced performance of root herbivores on phenolic-rich plants. J Chem Ecol 42:768–771. 10.1007/s10886-016-0734-7 DOI: 10.1007/s10886-016-0734-7
Frew A, Weston LA, Reynolds OL, Gurr GM (2018) The role of silicon in plant biology: a paradigm shift in research approach. Ann Bot 121:1265–1273. 10.1093/aob/mcy009 DOI: 10.1093/aob/mcy009
Georgiadis A, Sauer D, Herrmann L et al (2013) Development of a method for sequential Si extraction from soils. Geoderma 209–210:251–261. 10.1016/j.geoderma.2013.06.023 DOI: 10.1016/j.geoderma.2013.06.023
Gong HJ, Chen KM, Chen GC et al (2003) Effects of silicon on growth of wheat under drought. J Plant Nutr 26:1055–1063. 10.1081/PLN-120020075 DOI: 10.1081/PLN-120020075
Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979. 10.1111/j.1365-3040.2006.01572.x
Güereña D, Lehmann J, Hanley K et al (2013) Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil 365:239–254. 10.1007/s11104-012-1383-4 DOI: 10.1007/s11104-012-1383-4
Guerriero G, Stokes I, Valle N et al (2020) Visualising Silicon in Plants: Histochemistry, Silica Sculptures and Elemental Imaging. Cells 1–18. 10.3390/cells9041066
Gul S, Whalen JK, Thomas BW et al (2015) Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric Ecosyst Environ 206:46–59. 10.1016/j.agee.2015.03.015 DOI: 10.1016/j.agee.2015.03.015
Guntzer F, Keller C, Poulton PR et al (2012) Long-term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant Soil 352:173–184. 10.1007/s11104-011-0987-4 DOI: 10.1007/s11104-011-0987-4
Haefele SM, Konboon Y, Wongboon W et al (2011) Effects and fate of biochar from rice residues in rice-based systems. F Crop Res 121:430–440. 10.1016/j.fcr.2011.01.014 DOI: 10.1016/j.fcr.2011.01.014
Hall CR, Waterman JM, Vandegeer RK et al (2019) The role of silicon in antiherbivore phytohormonal signalling. Front Plant Sci 10:1–7. 10.3389/fpls.2019.01132 DOI: 10.3389/fpls.2019.01132
Hall CR, Dagg V, Waterman JM, Johnson SN (2020) Silicon alters leaf surface morphology and suppresses insect herbivory in a model grass species. 10.3390/plants9050643
Hartley SE, DeGabriel JL (2016) The ecology of herbivore-induced silicon defences in grasses. Funct Ecol 30:1311–1322. 10.1111/1365-2435.12706 DOI: 10.1111/1365-2435.12706
Hartley SE, Fitt RN, McLarnon EL, Wade RN (2015) Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply. Front Plant Sci 6:35. 10.3389/fpls.2015.00035 DOI: 10.3389/fpls.2015.00035
Haymsom M, Chapman L (1975) Some aspects of the calcium silicate trials at Mackay. Proc Queensl Soc Sugar Cane Technol 42:117–122
Haynes RJ, Belyaeva ON, Kingston G (2013) Evaluation of industrial wastes as sources of fertilizer silicon using chemical extractions and plant uptake. J Plant Nutr Soil Sci 176:238–248. 10.1002/jpln.201200372 DOI: 10.1002/jpln.201200372
Hodson MJ (2019) The relative importance of cell wall and lumen phytoliths in carbon sequestration in soil: A hypothesis. Front Earth Sci 7:167. 10.3389/feart.2019.00167 DOI: 10.3389/feart.2019.00167
Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046. 10.1093/aob/mci255 DOI: 10.1093/aob/mci255
Houben D, Sonnet P, Cornelis J-T (2014) Biochar from Miscanthus: A potential silicon fertilizer. Plant Soil 374:871–882. 10.1007/s11104-013-1885-8
Huang F, Gao LY, Wu RR et al (2020) Qualitative and quantitative characterization of adsorption mechanisms for Cd2 + by silicon-rich biochar. Sci Total Environ 731:139163. 10.1016/j.scitotenv.2020.139163 DOI: 10.1016/j.scitotenv.2020.139163
Johnson SN, Hartley SE (2018) Elevated carbon dioxide and warming impact silicon and phenolic-based defences differently in native and exotic grasses. Glob Chang Biol 24:3886–3896. 10.1111/gcb.13971 DOI: 10.1111/gcb.13971
Johnson SN, Tjoelker MG, Ryalls JMW et al (2019) Climate warming and plant biomechanical defences: Silicon addition contributes to herbivore suppression in a pasture grass. Funct Ecol 33:587–596. 10.1111/1365-2435.13295 DOI: 10.1111/1365-2435.13295
Keller C, Guntzer F, Barboni D et al (2012) Impact of agriculture on the Si biogeochemical cycle: Input from phytolith studies. Comptes Rendus - Geosci 344:739–746. 10.1016/j.crte.2012.10.004 DOI: 10.1016/j.crte.2012.10.004
Kelly EF (1990) Methods for extracting opal phytoliths from soil and plant material. In: Workshop on biotic indicators of global change, Seattle, Washington
Kido N, Yokoyama R, Yamamoto T et al (2015) The matrix polysaccharide (1;3,1;4)-2- d -glucan is involved in silicon-dependent strengthening of rice cell wall. Plant Cell Physiol 56:268–276. 10.1093/pcp/pcu162 DOI: 10.1093/pcp/pcu162
Kitajima K, Llorens A-M, Stefanescu C et al (2012) How cellulose-based leaf toughness and lamina density contribute to long leaf lifespans of shade-tolerant species. New Phytol 195:640–652 DOI: 10.1111/j.1469-8137.2012.04203.x
Kitajima K, Wright SJ, Westbrook JW (2016) Leaf cellulose density as the key determinant of inter- and intra-specific variation in leaf fracture toughness in a species-rich tropical forest. Interface Focus 6:20150100. 10.1098/rsfs.2015.0100 DOI: 10.1098/rsfs.2015.0100
Klotzbücher A, Klotzbücher T, Jahn R et al (2017) Effects of Si fertilization on Si in soil solution, Si uptake by rice, and resistance of rice to biotic stresses in Southern Vietnam Effects of Si fertilization on Si in soil solution, Si uptake by rice, and resistance of rice to biotic stresses in So. Paddy Water Environ. https://doi.org/10.1007/s10333-017-0610-2
Klotzbücher T, Klotzbücher A, Kaiser K et al (2018) Variable silicon accumulation in plants affects terrestrial carbon cycling by controlling lignin synthesis. Glob Chang Biol 24:183–189. 10.1111/gcb.13845 DOI: 10.1111/gcb.13845
Kowalenko CG, Babuin D (2014) Use of Lithium Metaborate to Determine Total Phosphorus and Other Element Concentrations in Soil, Plant, and Related Materials. Commun Soil Sci Plant Anal 45:15–28. 10.1080/00103624.2013.848884 DOI: 10.1080/00103624.2013.848884
Kumar S, Elbaum R (2018) Interplay between silica deposition and viability during the life span of sorghum silica cells. New Phytol 217:1137–1145. 10.1111/nph.14867 DOI: 10.1111/nph.14867
Lakanen E, Erviö R (1971) A comparison of eight extractans for the determination of plant available micronutrients in soils. Acta Agral Fenn 123:223–232
Leksungnoen P, Wisawapipat W, Ketrot D et al (2019) Biochar and ash derived from silicon-rich rice husk decrease inorganic arsenic species in rice grain. Sci Total Environ 684:360–370. 10.1016/j.scitotenv.2019.05.247 DOI: 10.1016/j.scitotenv.2019.05.247
Leroy N, de Tombeur F, Walgraffe Y et al (2019) Silicon and plant natural defenses against insect pests: impact on plant volatile organic compounds and cascade effects on multitrophic interactions. Plants 8:444 DOI: 10.3390/plants8110444
Li Z, Delvaux B (2019) Phytolith-rich biochar: A potential Si fertilizer in desilicated soils. GCB Bioenergy. 10.1111/gcbb.12635 DOI: 10.1111/gcbb.12635
Li Z, Delvaux B, Yans J et al (2018) Phytolith-rich biochar increases cotton biomass and silicon-mineralomass in a highly weathered soil. J Plant Nutr Soil Sci. 10.1002/jpln.201800031 DOI: 10.1002/jpln.201800031
Li J, Zheng L, Wang SL et al (2019a) Sorption mechanisms of lead on silicon-rich biochar in aqueous solution: Spectroscopic investigation. Sci Total Environ 672:572–582. 10.1016/j.scitotenv.2019.04.003 DOI: 10.1016/j.scitotenv.2019.04.003
Li Z, Unzué-Belmonte D, Cornelis J-T et al (2019b) Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability. Plant Soil. 10.1007/s11104-019-04013-0 DOI: 10.1007/s11104-019-04013-0
Liang Y, Nikolic M, Bélanger RR et al (2015) Silicon in agriculture. From theory to practice. In: Silicon in agriculture, pp 115–131
Lucas Y (2001) The role of plants in controlling rates and products of weathering: Importance of biological pumping. Annu Rev Earth Planet Sci 29:135–163. 10.1002/fut.10088 DOI: 10.1002/fut.10088
Ma JF, Tamai K, Yamaji N et al (2006) A silicon transporter in rice. Nature 440:688–691. 10.1038/nature04590 DOI: 10.1038/nature04590
MAAH (2020) Annuaire des statistiques agricoles 2018. Ouagadougou, Burkina Faso
Massey FP, Hartley SE (2006) Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proc R Soc B Biol Sci 273:2299–2304. 10.1098/rspb.2006.3586 DOI: 10.1098/rspb.2006.3586
Massey FP, Ennos AR, Hartley SE (2006) Silica in grasses as a defence against insect herbivores: Contrasting effects on folivores and a phloem feeder. J Anim Ecol 75:595–603. 10.1111/j.1365-2656.2006.01082.x DOI: 10.1111/j.1365-2656.2006.01082.x
Massey FP, Ennos AR, Hartley SE (2007) Grasses and the resource availability hypothesis: The importance of silica-based defences. J Ecol 95:414–424. 10.1111/j.1365-2745.2007.01223.x DOI: 10.1111/j.1365-2745.2007.01223.x
McBurney T (1992) The relationship between leaf thickness and plant water potential. J Exp Bot 43:327–335 DOI: 10.1093/jxb/43.3.327
McKeague JA, Cline MG (1963) Silica in soil solutions. I. The form and concentration of dissolved silica in aqueous extarcts of some soils. Can J Soil Sci 43:70–82 DOI: 10.4141/cjss63-010
Metson AJ (1956) Methods of Chemical Analysis for Soil Survey Samples., Bulletin 1. Wellington
Meunier JD, Barboni D, Anwar-ul-Haq M et al (2017) Effect of phytoliths for mitigating water stress in durum wheat. New Phytol 215:229–239. 10.1111/nph.14554 DOI: 10.1111/nph.14554
Meunier JD, Sandhya K, Prakash NB et al (2018) pH as a proxy for estimating plant-available Si? A case study in rice fields in Karnataka (South India). Plant Soil 432:143–155. 10.1007/s11104-018-3758-7 DOI: 10.1007/s11104-018-3758-7
Miles N, Manson AD, Rhodes R et al (2014) Extractable Silicon in Soils of the South African Sugar Industry and Relationships with Crop Uptake. Commun Soil Sci Plant Anal 45:2949–2958. 10.1080/00103624.2014.956881 DOI: 10.1080/00103624.2014.956881
Nair VD, Nair PKR, Dari B et al (2017) Biochar in the agroecosystem-climate-change-sustainability Nexus. Front Plant Sci 8:. 10.3389/fpls.2017.02051
Nakamura R, Cornélis J-T, de Tombeur F et al (2020a) Comparative analysis of borate fusion versus sodium carbonate extraction for quantification of silicon contents in plants. J Plant Res 133:271–277. 10.1007/s10265-019-01162-2 DOI: 10.1007/s10265-019-01162-2
Nakamura R, Cornelis J, de Tombeur F et al (2020b) Diversity of silicon release rates among tropical tree species during leaf-litter decomposition. Geoderma 368:114288. 10.1016/j.geoderma.2020.114288
Onoda Y, Westoby M, Adler PB et al (2011) Global patterns of leaf mechanical properties. Ecol Lett 14:301–312. 10.1111/j.1461-0248.2010.01582.x DOI: 10.1111/j.1461-0248.2010.01582.x
Peeters PJ (2002) Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biol J Linn Soc 77:43–65 DOI: 10.1046/j.1095-8312.2002.00091.x
Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207 DOI: 10.1111/j.1469-185X.1983.tb00385.x
Reibe K, Roß CL, Ellmer F (2015) Hydro-/Biochar application to sandy soils: impact on yield components and nutrients of spring wheat in pots. Arch Agron Soil Sci 61:1055–1060. 10.1080/03650340.2014.977786 DOI: 10.1080/03650340.2014.977786
Sanson G, Read J, Aranwela N et al (2001) Measurement of leaf biomechanical properties in studies of herbivory: Opportunities., problems and procedures. Austral Ecol 26:535–546. 10.1046/j.1442-9993.2001.01154.x DOI: 10.1046/j.1442-9993.2001.01154.x
Sauer D, Saccone L, Conley DJ et al (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108. 10.1007/s10533-005-5879-3 DOI: 10.1007/s10533-005-5879-3
Savant NK, Korndörfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: A review. J Plant Nutr 22:1853–1903. 10.1080/01904169909365761 DOI: 10.1080/01904169909365761
Schaller J, Heimes R, Ma JF et al (2019) Silicon accumulation in rice plant aboveground biomass affects leaf carbon quality. Plant Soil 444:399–407. 10.1007/s11104-019-04267-8 DOI: 10.1007/s11104-019-04267-8
Schoelynck J, Bal K, Backx H et al (2010) Silica uptake in aquatic and wetland macrophytes: A strategic choice between silica, lignin and cellulose? New Phytol 186:385–391. 10.1111/j.1469-8137.2009.03176.x DOI: 10.1111/j.1469-8137.2009.03176.x
Simpson KJ, Wade RN, Rees M et al (2017) Still armed after domestication? Impacts of domestication and agronomic selection on silicon defences in cereals. Funct Ecol 31:2108–2117. 10.1111/1365-2435.12935 DOI: 10.1111/1365-2435.12935
Sommer M, Jochheim H, Höhn A et al (2013) Si cycling in a forest biogeosystem-the importance of transient state biogenic Si pools. Biogeosciences 10:4991–5007. 10.5194/bg-10-4991-2013 DOI: 10.5194/bg-10-4991-2013
SP/CONEDD (2010) Troisième rapport sur l’état de l’environnement au Ouagadougou, Burkina Faso
Tammeorg P, Simojoki A, Mäkelä P et al (2014) Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand. Agric Ecosyst Environ 191:108–116. 10.1016/j.agee.2014.01.007 DOI: 10.1016/j.agee.2014.01.007
Tavakkoli E, Lyons G, English P, Guppy CN (2011) Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilisation. J Plant Nutr Soil Sci 174:437–446. 10.1002/jpln.201000023 DOI: 10.1002/jpln.201000023
Traoré A, Traoré K, Traoré O et al (2015) Caractérisation des systèmes de production à base de riz pluvial strict dans les exploitations agricoles de la zone Sud-soudanienne du Burkina Faso. Int J Biol Chem Sci 9:2685–2697. 10.4314/ijbcs.v9i6.14 DOI: 10.4314/ijbcs.v9i6.14
Trembath-Reichert E, Wilson JP, McGlynn SE, Fischer WW (2015) Four hundred million years of silica biomineralization in land plants. Proc Natl Acad Sci U S A 112:5449–5454. 10.1073/pnas.1500289112 DOI: 10.1073/pnas.1500289112
Tubana BS, Babu T, Datnoff LE (2016) A Review of Silicon in Soils and Plants and Its Role in US Agriculture. Soil Sci 181:1. 10.1097/SS.0000000000000179 DOI: 10.1097/SS.0000000000000179
Vander Linden C, Delvaux B (2019) The weathering stage of tropical soils affects the soil-plant cycle of silicon, but depending on land use. Geoderma 351:209–220. 10.1016/j.geoderma.2019.05.033 DOI: 10.1016/j.geoderma.2019.05.033
Wang Y, Xiao X, Chen B (2018) Biochar impacts on soil silicon dissolution kinetics and their interaction mechanisms. Sci Rep:1–11. 10.1038/s41598-018-26396-3
Wang Y, Xiao X, Xu Y, Chen B (2019) Environmental Effects of Silicon within Biochar (Sichar) and Carbon-Silicon Coupling Mechanisms: A Critical Review. Environ Sci Technol 53:13570–13582. 10.1021/acs.est.9b03607 DOI: 10.1021/acs.est.9b03607
Wang Y, Zhang K, Lu L et al (2020) Novel insights into effects of silicon-rich biochar (Sichar) amendment on cadmium uptake, translocation and accumulation in rice plants. Environ Pollut 265:114772. 10.1016/j.envpol.2020.114772 DOI: 10.1016/j.envpol.2020.114772
Waterman JM, Hall CR, Mikhael M et al (2020) Short-term resistance that persists: Rapidly induced silicon anti-herbivore defence affects carbon-based plant defences. Funct Ecol In press. 10.1111/1365-2435.13702 DOI: 10.1111/1365-2435.13702
Wu W, Limmer MA, Seyfferth AL (2019) Quantitative assessment of plant-available silicon extraction methods in rice paddy soil under different management. Soil Sci Soc Am J. 10.1002/saj2.20013.This DOI: 10.1002/saj2.20013.This
Yamaji N, Ma JF (2011) Further characterization of a rice silicon efflux transporter, Lsi2. Soil Sci Plant Nutr 57:259–264. 10.1080/00380768.2011.565480 DOI: 10.1080/00380768.2011.565480
Yamamoto T, Nakamura A, Iwai H et al (2012) Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. J Plant Res 125:771–779. 10.1007/s10265-012-0489-3 DOI: 10.1007/s10265-012-0489-3
Zama EF, Reid BJ, Sun GX et al (2018) Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) and improvement in the plant growth. J Clean Prod 189:386–395. 10.1016/j.jclepro.2018.04.056 DOI: 10.1016/j.jclepro.2018.04.056
Zanão Júnior LA, Ávila VT de, Neves JCL et al (2010) Rice grown in nutrient solution with doses of manganese and silicon. Rev Bras Ciência do Solo 34:1629–1639. 10.1590/s0100-06832010000500016