de Tombeur, Félix ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Laliberté, E.; Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC H1X 2B2, Canada, School of Biological Sciences, The University of Western Australia, Crawley (Perth)WA 6009, Australia
Lambers, H.; School of Biological Sciences, The University of Western Australia, Crawley (Perth)WA 6009, Australia
Faucon, M.-P.; AGHYLE, SFR Condorcet FR CNRS 3417, UniLaSalle, 19 rue Pierre Waguet, Beauvais, 60026, France
Zemunik, G.; School of Biological Sciences, The University of Western Australia, Crawley (Perth)WA 6009, Australia
Turner, B. L.; Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama, Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
Cornelis, Jean-Thomas ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Mahy, Grégory ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Language :
English
Title :
A shift from phenol to silica-based leaf defences during long-term soil and ecosystem development
Aplin, T.E. & Cannon, J.R. (1971). Distribution of alkaloids in some Western Australian plants. Econ. Bot., 25, 366–380.
Bettaieb Rebey, I., Bourgou, S., Ben Kaab, S., Aidi Wannes, W., Ksouri, R., Saidani Tounsi, M.et al. (2020). On the effect of initial drying techniques on essential oil composition, phenolic compound and antioxidant properties of anise (Pimpinella anisum L.) seeds. J. Food Meas. Charact., 14, 220–228.
Bryant, J.P., Chapin, F.S. & Klein, D.R. (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 40, 357–368.
Carey, J.C., Abbott, B.W. & Rocha, A.V. (2019). Plant uptake offsets silica release from a large arctic tundra wildfire. Earth’s Futur., 7, 1044–1057.
Carey, J.C., Parker, T.C., Fetcher, N. & Tang, J. (2017). Biogenic silica accumulation varies across tussock tundra plant functional type. Funct. Ecol., 31, 2177–2187.
Chao, T.T. & Sanzolone, R.F. (1992). Decomposition techniques. J. Geochemical Explor., 44, 65–106.
Cooke, J. & Leishman, M.R. (2012). Tradeoffs between foliar silicon and carbon-based defences: Evidence from vegetation communities of contrasting soil types. Oikos, 121, 2052–2060.
Cooke, J. & Leishman, M.R. (2016). Consistent alleviation of abiotic stress with silicon addition: a meta-analysis. Funct. Ecol., 30, 1340–1357.
Coskun, D., Deshmukh, R., Sonah, H., Menzies, J.G., Reynolds, O., Ma, J.F.et al. (2019). The controversies of silicon’s role in plant biology. New Phytol., 221, 67–85.
Debona, D., Rodrigues, F.A. & Datnoff, L.E. (2017). Silicon’s role in abiotic and biotic plant stresses. Annu. Rev. Phytopathol., 55, 85–107.
Deshmukh, R., Sonah, H. & Belanger, R. (2020). New evidence defining the evolutionary path of aquaporins regulating silicon uptake in land plants. J. Exp. Bot., 71, 6775–6788.
Deshmukh, R.K., Vivancos, J., Guérin, V., Sonah, H., Labbé, C., Belzile, F.et al. (2013). Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol. Biol., 83, 303–315.
Endara, M.J. & Coley, P.D. (2011). The resource availability hypothesis revisited: A meta-analysis. Funct. Ecol., 25, 389–398.
Epstein, E. (1994). The anomaly of silicon in plant biology. Proc. Natl Acad. Sci. USA, 91, 11–17.
Fauteux, F., Chain, F., Belzile, F., Menzies, J.G. & Bélanger, R.R. (2006). The protective role of Si in the Arabidopsis-powdery mildew pathosystem. Proc. Natl. Acad. Sci., 103, 17554–17559.
Frew, A., Powell, J.R., Sallam, N., Allsopp, P.G. & Johnson, S.N. (2016). Trade-offs between silicon and phenolic defenses may explain enhanced performance of root herbivores on phenolic-rich plants. J. Chem. Ecol., 42, 768–771.
Frew, A., Weston, L.A., Reynolds, O.L. & Gurr, G.M. (2018). The role of silicon in plant biology: a paradigm shift in research approach. Ann. Bot., 121, 1265–1273.
Garnier, E. & Navas, M.-L. (2013). Caractérisation fonctionnelle des végétaux. In: Diversité fonctionnelle des plantes (ed. Boeck, D.). de Boeck, Belgique, p. 353.
Guilherme Pereira, C., Hayes, P.E., O’Sullivan, O.S., Weerasinghe, L.K., Clode, P.L., Atkin, O.K.et al. (2019). Trait convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global biodiversity hotspot. J. Ecol., 107, 2006–2023.
Hall, A.D. & Morison, C.G.T. (1906). On the function of silica in the nutrition of cereals.-Part I. Proc. R. Soc. London. Ser. B, 77, 455–477.
Hartley, S.E. & DeGabriel, J.L. (2016). The ecology of herbivore-induced silicon defences in grasses. Funct. Ecol., 30, 1311–1322.
Hättenschwiller, S., Hagerman, A.E. & Vitousek, P.M. (2003). Polyphenols in litter from tropical montane forests across a wide range in soil fertility. Biogeochemistry, 64, 129–148.
Haukioja, E., Ossipov, V., Koricheva, J., Honkanen, T., Larsson, S. & Lempa, K. (1998). Biosynthetic origin of carbon-based secondary compounds: Cause of variable responses of woody plants to fertilization?Chemoecology, 8, 133–139.
Hayes, P., Turner, B.L., Lambers, H. & Laliberté, E. (2014). Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J. Ecol., 102, 396–410.
Haymsom, M. & Chapman, L. (1975). Some aspects of the calcium silicate trials at Mackay. Proc. Queensl. Soc. Sugar Cane Technol., 42, 117–122.
Hodson, M.J., White, P.J., Mead, A. & Broadley, M.R. (2005). Phylogenetic variation in the silicon composition of plants. Ann. Bot., 96, 1027–1046.
Hothorn, T., Bretz, F. & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical J., 50, 346–363.
Ishizawa, H., Niiyama, K., Iida, Y., Shari, N.H.Z., Ripin, A. & Kitajima, K. (2019). Spatial variations of soil silicon availability and biogenic silicon flux in a lowland tropical forest in Malaysia. Ecol. Res., 34, 548–559.
Johnson, S.N., Hartley, S.E., Ryalls, J.M.W., Frew, A. & Hall, C.R. (2020). Targeted plant defense: silicon conserves hormonal defense signaling impacting chewing but not fluid-feeding herbivores. Ecology, In press.
Johnson, S.N., Rowe, R.C. & Hall, C.R. (2019). Silicon is an inducible and effective herbivore defence against Helicoverpa punctigera (Lepidoptera: Noctuidae) in soybean. Bull. Entomol. Res., 110, 417–422.
Jones, C.G. & Hartley, S.E. (1999). A protein competition model of phenolic allocation. Oikos, 86, 27–44.
Katz, O. (2014). Beyond grasses: the potential benefits of studying silicon accumulation in non-grass species. Front. Plant Sci., 376, 1–3.
Kendrick, G.W., Wyrwoll, K.-H. & Szabo, B.J. (1991). Pliocene-Pleistocene coastal events and history along the western margin of Australia. Quat. Sci. Rev., 10, 419–439.
Klotzbücher, T., Klotzbücher, A., Kaiser, K., Vetterlein, D., Jahn, R. & Mikutta, R. (2018). Variable silicon accumulation in plants affects terrestrial carbon cycling by controlling lignin synthesis. Glob. Chang. Biol., 24, 183–189.
Koricheva, J., Larsson, S., Haukioja, E. & Keinanen, M. (1998). Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos, 83, 212–226.
Kostic, L., Nikolic, N., Bosnic, D., Samardzic, J. & Nikolic, M. (2017). Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil, 419, 447–455.
Kováčik, J., Klejdus, B., Bačkor, M. & Repčák, M. (2007). Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Sci., 172, 393–399.
Kraus, T.E.C., Zasoski, R.J. & Dahlgren, R.A. (2004). Fertility and pH effects on polyphenol and condensed tannin concentrations in foliage and roots. Plant Soil, 262, 95–109.
Kumar, S., Soukup, M. & Elbaum, R. (2017). Silicification in grasses: variation between different cell types. Front. Plant Sci., 8, 438.
Laliberté, E., Turner, B.L., Costes, T., Pearse, S.J., Wyrwoll, K.H., Zemunik, G.et al. (2012). Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. J. Ecol., 100, 631–642.
Laliberté, E., Zemunik, G. & Turner, B.L. (2014). Environmental filtering explains variation in plant diversity along resource gradients. Science, 345, 1602–1605.
Lambers, H. (2004). Plant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot, 2004th edn. Univerty of Western Australia Publishing, Crawley, Australia.
Lambers, H., Albornoz, F., Kotula, L., Laliberté, E., Ranathunge, K., Teste, F.P.et al. (2018). How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant Soil, 424, 11–33.
Lambers, H. & Oliveira, R.S. (2019). Plant Physiological Ecology, 3rd edn. Springer International Publishing, Cham, Switzerland.
Lambers, H. & Poorter, H. (1992). Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res., 23, 187–261.
Leroy, N., deTombeur, F., Walgraffe, Y., Cornelis, J.-T. & Verheggen, F.J. (2019). Silicon and plant natural defenses against insect pests: Impact on plant volatile organic compounds and cascade effects on multitrophic interactions. Plants, 8, 444.
deLong, J.R., Sundqvist, M.K., Gundale, M.J., Giesler, R. & Wardle, D.A. (2016). Effects of elevation and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath vegetation. Funct. Ecol., 30, 314–325.
Ma, J.F. & Takahashi, E. (1990). Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil, 126, 115–119.
Ma, J.F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M.et al. (2006). A silicon transporter in rice. Nature, 440, 688–691.
Massey, F.P., Ennos, A.R. & Hartley, S.E. (2006). Silica in grasses as a defence against insect herbivores: Contrasting effects on folivores and a phloem feeder. J. Anim. Ecol., 75, 595–603.
Massey, F.P., Ennos, A.R. & Hartley, S.E. (2007). Grasses and the resource availability hypothesis: the importance of silica-based defences. J. Ecol., 95, 414–424.
Massey, F.P. & Hartley, S.E. (2006). Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proc. R. Soc. B Biol. Sci., 273, 2299–2304.
Massey, F. & Hartley, S. (2009). Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. J. Anim. Ecol., 78, 281–291.
McArthur, W.M. & Bettenay, E. (1974). Development and distribution of soils of the Swan Coastal Plain, Western Australia. CSIRO. CSIRO. Melbourne, Canberra.
McNaughton, S.J., Tarrants, J.L., McNaughton, M.M. & Davis, R.D. (1985). Silica as a defense against herbivory and a growth promotor in african grasses. Ecology, 66, 528–535.
Moles, A.T., Peco, B., Wallis, I.R., Foley, W.J., Poore, A.G.B., Seabloom, E.W.et al. (2013). Correlations between physical and chemical defences in plants: Tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?New Phytol., 198, 252–263.
Motomura, H., Mita, N. & Suzuki, M. (2002). Silica accumulation in long-lived leaves of Sasa veitchii (Carrière) rehder (Poaceae-Bambusoideae). Ann. Bot., 90, 149–152.
Nakamura, R., Ishizawa, H., Wagai, R., Suzuki, S., Kitayama, K. & Kitajima, K. (2019). Silicon cycled by tropical forest trees: effects of species, elevation and parent material on Mount Kinabalu, Malaysia. Plant Soil, 443, 155–166.
Neu, S., Schaller, J. & Dudel, E.G. (2017). Silicon availability modifies nutrient use efficiency and content, C:N: P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci. Rep., 7, 40829.
Northup, R.R., Yu, Z., Dahlgren, R.A. & Vogt, A. (1995). Polyphenol control of nitrogen release from pine litter. Nature, 377, 227–229.
Pang, J., Bansal, R., Zhao, H., Bohuon, E., Lambers, H., Ryan, M.H.et al. (2018). The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. New Phytol., 219, 518–529.
Putra, R., Powell, J.R., Hartley, S.E. & Johnson, S.N. (2020). Is it time to include legumes in plant silicon research?Funct. Ecol., 34, 1142–1157.
Quigley, K.M., Griffith, D.M., Donati, G.L. & Anderson, T.M. (2020). Soil nutrients and precipitation are major drivers of global patterns of grass leaf silicification. Ecology, 101, 1–10.
Rafferty, C., Lamont, B.B. & Hanley, M.E. (2005). Selective feeding by kangaroos (Macropus fuliginosus) on seedlings of Hakea species: Effects of chemical and physical defences. Plant Ecol., 177, 201–208.
Rafferty, C.M., Lamont, B.B. & Hanley, M.E. (2010). Herbivore feeding preferences in captive and wild populations. Austral Ecol., 35, 257–263.
Raven, J.A. (1983). The transport and function of silicon in plants. Biol. Rev., 58, 179–207.
Reich, P.B. (2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto. J. Ecol., 102, 275–301.
Salminen, J.P. & Karonen, M. (2011). Chemical ecology of tannins and other phenolics: We need a change in approach. Funct. Ecol., 25, 325–338.
Sampedro, L., Moreira, X. & Zas, R. (2011). Costs of constitutive and herbivore-induced chemical defences in pine trees emerge only under low nutrient availability. J. Ecol., 99, 818–827.
Sauer, D., Saccone, L., Conley, D.J., Herrmann, L. & Sommer, M. (2006). Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry, 80, 89–108.
Schaller, J., Brackhage, C. & Dudel, E.G. (2012). Silicon availability changes structural carbon ratio and phenol content of grasses. Environ. Exp. Bot., 77, 283–287.
Schaller, J., Turner, B.L., Weissflog, A., Pino, D., Bielnicka, A.W. & Engelbrecht, B.M.J. (2018). Silicon in tropical forests: large variation across soils and leaves suggests ecological significance. Biogeochemistry, 140, 161–174.
Schoelynck, J., Bal, K., Backx, H., Okruszko, T., Meire, P. & Struyf, E. (2010). Silica uptake in aquatic and wetland macrophytes: A strategic choice between silica, lignin and cellulose?New Phytol., 186, 385–391.
Simpson, K.J., Wade, R.N., Rees, M., Osborne, C.P. & Hartley, S.E. (2017). Still armed after domestication? Impacts of domestication and agronomic selection on silicon defences in cereals. Funct. Ecol., 31, 2108–2117.
Stitt, M. & Quick, W.P. (1989). Photosynthetic carbon partitioning: its regulation and possibilities for manipulation. Physiol. Plant., 77, 633–641.
Teodoro, G.S., Lambers, H., Nascimento, D.L., deBritto Costa, P., Flores-Borges, D.N.A., Abrahão, A.et al. (2019). Specialized roots of Velloziaceae weather quartzite rock while mobilizing phosphorus using carboxylates. Funct. Ecol., 33, 762–773.
deTombeur, F., Turner, B.L., Laliberté, E., Lambers, H. & Cornelis, J.T. (2020b). Silicon dynamics during 2 million years of soil development in a coastal dune chronosequence under a mediterranean climate. Ecosystems, 23, 1614–1630.
deTombeur, F., Turner, B.L., Laliberté, E., Lambers, H., Mahy, G., Faucon, M.P.et al. (2020c). Plants sustain the terrestrial silicon cycle during ecosystem retrogression. Science, 369, 1245–1248.
deTombeur, F., Vander Linden, C., Cornélis, J.-T., Godin, B., Compère, P. & Delvaux, B. (2020a). Soil and climate affect foliar silicification patterns and silica-cellulose balance in sugarcane (Saccharum officinarum). Plant Soil, 452, 529–546.
Trembath-Reichert, E., Wilson, J.P., McGlynn, S.E. & Fischer, W.W. (2015). Four hundred million years of silica biomineralization in land plants. Proc. Natl Acad. Sci. USA, 112, 5449–5454.
Turner, B.L., Hayes, P.E. & Laliberté, E. (2018). A climosequence of chronosequences in southwestern Australia. Eur. J. Soil Sci., 69, 69–85.
Turner, B.L. & Laliberté, E. (2015). Soil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich mediterranean shrubland in Southwestern Australia. Ecosystems, 18, 287–309.
Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I.et al. (2007). Let the concept of trait be functional!. Oikos, 116, 882–892.
Vitousek, P. (2004). Nutrient Cycling and Limitation - Hawai’i as Model System. Princeton University Press, New Jersey.
Vitousek, P.M., Walker, L.R., Whiteaker, L.D. & Matson, P.A. (1993). Nutrient limitations to plant growth during primary succession in Hawaii Volcanoes National Park. Biogeochemistry, 23, 197–215.
Zemunik, G., Turner, B.L., Lambers, H. & Laliberté, E. (2015). Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nat. Plants, 1, 1–4.
Zemunik, G., Turner, B.L., Lambers, H. & Laliberté, E. (2016). Increasing plant species diversity and extreme species turnover accompany declining soil fertility along a long-term chronosequence in a biodiversity hotspot. J. Ecol., 104, 792–805.
Zhang, L.H., Shao, H.B., Ye, G.F. & Lin, Y.M. (2012). Effects of fertilization and drought stress on tannin biosynthesis of Casuarina equisetifolia seedlings branchlets. Acta Physiol. Plant., 34, 1639–1649.