SECULAR EVOLUTION OF THE VERTICAL COLUMN ABUNDANCES OF CHCLF2 (HCFC-22) IN THE EARTH'S ATMOSPHERE INFERRED FROM GROUND-BASED IR SOLAR OBSERVATIONS AT THE JUNGFRAUJOCH AND AT KITT-PEAK, AND COMPARISON WITH MODEL-CALCULATIONS
ATMOSPHERIC COMPOSITION; INFRARED SOLAR OBSERVATIONS; CHCLF2; greenhouse gas; Montreal Protocol; trend; HCFC22
Abstract :
[en] Series of high-resolution infrared solar spectra recorded at the International Scientific Station of the Jungfraujoch, Switzerland, between 06/1986 and 11/1992, and at Kitt Peak National Observatory, Tucson, Arizona (U.S.A.), from 12/1980 to 04/1992, have been analyzed to provide a comprehensive ensemble of vertical column abundances of CHClF2 (HCFC-22; Freon-22) above the European and the North American continents. The columns were derived from nonlinear least-squares curve fittings between synthetic spectra and the observations containing the unresolved 2nu6 Q-branch absorption of CHClF2 at 829.05 cm-1. The changes versus time observed in these columns were modeled assuming both an exponential and a linear increase with time. The exponential rates of increase at one-sigma uncertainties were found equal to (7.0 +/- 0.35)%/yr for the Junfraujoch data and (7.0 +/- 0.23)%/yr for the Kitt Peak data. The exponential trend of 7.0%/yr found at both stations widely separated in location can be considered as representative of the global increase of the CHClF2 burden in the Earth's atmosphere during the period 1980 to 1992. When assuming two realistic vertical volume mixing ratio profiles for CHClF2 in the troposphere, one quasi constant and the other decreasing by about 13% from the ground to the tropopause, the concentrations for mid-1990 were found to lie between 97 and 111 pptv (parts per trillion by volume) at the 3.58 km altitude of the Jungfraujoch and between .97 and 103 pptv at Kitt Peak, 2.09 km above sea level. Corresponding values derived from calculations using a high vertical resolution-2D model and recently compiled HCFC-22 releases to the atmosphere, were equal to 107 and 105 pptv, respectively, in excellent agreement with the measurements. The model calculated lifetime of CHClF2 was found equal to 15.6 years. The present results are compared critically with similar data found in the literature. On average, the concentrations found here are lower by 15-20% than those derived from in situ investigations; this difference cannot be explained by the absolute uncertainty of +/- 11% assigned presently to the infrared remote measurements.
Zander, Rodolphe ; Université de Liège - ULiège > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences)
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Demoulin, Philippe ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Rinsland, Curtis P.; NASA Langley Research Center (Virginia, USA)
Weisenstein, Debra K.; Atmospheric and Environmental Research Inc. (Cambridge)
Ko, Malcolm K. W.; Atmospheric and Environmental Research Inc. (Cambridge)
Sze, Nien Dak; Atmospheric and Environmental Research Inc. (Cambridge)
Gunson, Michael R.; California Institute of Technology (Pasadena, U.S.A.) > Jet Propulsion Laboratory
Language :
English
Title :
SECULAR EVOLUTION OF THE VERTICAL COLUMN ABUNDANCES OF CHCLF2 (HCFC-22) IN THE EARTH'S ATMOSPHERE INFERRED FROM GROUND-BASED IR SOLAR OBSERVATIONS AT THE JUNGFRAUJOCH AND AT KITT-PEAK, AND COMPARISON WITH MODEL-CALCULATIONS
Brown L.R., Farmer C.B., Rinsland C.P., Toth R.A. (1987) Molecular line parameters for the atmospheric trace molecule spectroscopy experiment. Appl. Opt. 26:5154-5182.
Brown A., Kean D.C., Duncan J.L. (1988) Vibrational anharmonicity and Fermi resonance in CHCIF2. Spectrochim. Acta A 44:553-565.
.
Fabian P., Borchers R., Krueger B.C., Lal S., Penkett S.A. (1985) The vertical distribution of CHCIF2 (CFC-22) in the stratosphere. Geophys. Res. Lett. 12:1-3.
Fabian P., Borchers R., Duscha H., Kruger B., Lal S., Subbaraya B. (1989) CHCIF2 (HCFC-22): distribution, budget and environmental impact. Ozone in the Atmosphere , R., Bojkov, P., Fabian, A. Deepak Publishing, Hampton, Virginia; 294-297.
Fraser P., Rasmussen R., Khalil M. (1989) Atmospheric observations of chlorocarbons, nitrous oxide, methane, carbon monoxide and hydrogen from the Oregon Graduate Center flask sampling program. Baseline 87 , B., Forgan, G., Ayers, Bureau of Meteorology/CSIRO, Australia; 40-44.
Goldman A., Murcray F.J., Blatherwick R.D., Bonomo F.S., Murcray F.H., Murcray D.G. (1981) Spectroscopic identification of CHCIF2 (F-22) in the lower stratosphere. Geophysical Research Letters 8:1012-1014.
Golombek A., Prinn R. (1989) Global three dimensional model calculations of the budgets and present-day atmospheric lifetimes of CCl2FCCIF2 (CFC-113) and CHCIF2 (HCFC-22). Geophys. Res. Lett. 16:1153-1156.
Johnston K. (1987) First step in ozone protection agreed. Nature 329:189.
Khalil M.A.K., Rasmussen R.A. (1981) Increase of CHCIF2 in the earth's atmosphere. Nature 292:823-824.
Khalil M.A.K., Rasmussen R.A. (1987) Chlorocarbons in the southern hemisphere: concentrations and temporal trends. Baseline Atmospheric Program (Australia) 1985 , B. W., Forgan, P. J., Fraser, Dept. of Sciences/Bureau of Meteorology, Australia; 26-29.
.
Khalil M.A.K., Rasmussen R.A. (1991) Trace gases over Hawaii: concentrations, trends and vertical gradients. Climate Monitoring and Diagnostics Laboratory No. 19, Summary Report 1990 , E. E., Ferguson, U.S. Department of Commerce, Boulder, Colorado; 102-104.
Kurylo M.J. (1991) Network for the detection of stratospheric change. SPIE 1491:168-174.
Leifer R., Sommers K., Guggenheim S.F. (1981) Atmospheric trace gas measurements with a new clean air sampling system. Geophys. Res. Lett. 8:1079-1081.
McDaniel A.H., Cantrell C.A., Davidson J.A., Shetter R.E., Calvert J.A. (1991) The temperature dependent absorption cross sections for the chlorofluorocarbons: CFC-11, CFC-12, CFC-13, CFC-14, CFC-22, CFC-113, CFC-114, and CFC-115. J. Atmos. Chem. 12:211-227.
.
.
Norton R.H., Rinsland C.P. (1991) ATMOS data processing and science analysis methods. Applied Optics 30:389-400.
Prinn R.G. (1988) How have the atmospheric concentrations of halocarbons changed?. The Changing Atmosphere , F. S., Rowland, I. S. A., Isaksen, John Wiley and Sons, New York; 33-48.
Rasmussen R.A., Khalil M.A.K., Penkett S.A., Prosser N.J.D. (1980) CHCIF2 (F-22) in the earth's atmosphere. Geophys. Res. Lett. 7:809-812.
Rasmussen R.A., Khalil M.A.K. (1982) Latitudinal distributions of trace gases in and above the boundary layer. Chemosphere 11:227-235.
Rasmussen R.A., Khalil M.A.K. Natural and anthropogenic trace gases in the lower troposphere of the Arctic, Department of Environmental Sciences, Beaverton, Oregon; 1983.
Rinsland C.P., Smith M.A.H., Rinsland P.L., Goldman A., Brault J.W., Stokes G.M. (1982) Ground-based infrared spectroscopic measurements of atmospheric hydrogen cyanide. J. Geophys. Res. , 11,119, 11,125; 87(11).
Rinsland C.P., Boughner R.E., Larsen J.C., Stokes G.M., Brault J.W. (1984) Diurnal variations of atmospheric nitric oxide: ground-based infrared spectroscopic measurements and their interpretation with time dependent photochemical model calculations. J. Geophys. Res. 89:9613-9622.
Rinsland C.P., Goldman A., Murcray F.J., Blatherwick R.D., Murcray D.G. (1988) Infrared measurements of atmospheric gases above Mauna Loa, Hawaï, in February 1987. J. Geophys. Res. , 12,607, 12,626; 93.
Rinsland C.P., Johnson D.W., Goldman A., Levine J.S. (1989) Evidence for a decline in the atmospheric accumulation rate of CHClF2 (CFC-22). Nature 337:535-537.
Rinsland C.P., Goldman A., Murcray F.J., Blatherwick R.D., Kosters J.J., Murcray D.G., Sze N.D., Massie S.T. (1990) Long-term trends in the concentrations of SF6, CHClF2, and COF2 in the lower stratosphere from analysis of high-resolution infrared solar occulation spectra. J. Geophys. Res. , 16,477, 16,490; 95.
Rinsland C.P., Zander R., Demoulin (1991) Ground-based infrared measurements of HNO3 total column abundances: long-term trend and variability. J. Geophys. Res. 96:9379-9389.
Rinsland C.P., Levine J.S., Goldman A., Sze N.D., Ko M.K.W., Johnson D.W. (1991) Infrared measurements of HF and HCl total column abundances above Kitt Peak, 1977–1990: seasonal cycles, long-term increases, and comparisons with model calculations. J Geophys Res , 15,523, 15,540; 96.
Rothman L.S., Gamache R.R., Tipping R.H., Rinsland C.P., Smith M.A.H., Benner D.C., Malathy Devi V., Flaud J.-M., Camy-Peyret C., Perrin A., Goldman A., Massie S.T., Brown L.R., Toth R.A. (1992) The HITRAN molecular database: Editions of 1991 and 1992. J. Quant. Spectrosc. Radiat. Transfer 48:469-508.
Smith M.A.H. Compilation of atmospheric gas concentration profiles from 0 to 50 km, NASA Technical Memo., TM 83289; 1982.
Varanasi P. (1992) Absorption spectra of HCFC-22 around 829 cm−1 at atmospheric conditions. J. Quant. Spectrosc. Radiat. Transfer 47:251-255.
.
.
.
Zander R., Stokes G.M., Brault J.W. (1983) Simultaneous detection of FC-11, FC-12 and FC-22, through 8 to 13 micrometers IR solar observations from the ground. Geophys. Res. Lett. 10:521-524.
Zander R., Rinsland C.P., Farmer C.B., Norton R.H. (1987) Infrared spectroscopic measurements of halogenated source gases in the stratosphere with the ATMOS instrument. J. Geophys. Res. 92:9836-9850.
Zander R., Demoulin, Ehhalt D.H., Schmidt U., Rinsland C.P. (1989) Secular increase of the total vertical column abundance of carbon monoxide above central Europe since 1950. J. Geophys. Res. , 11,021, 11,028; 94.
Zander R., Demoulin, Ehhalt D.H., Schmidt U. (1989) Secular increase of the vertical column abundance of methane derived from IR solar spectra recorded at the Jungfraujoch station. J. Geophys. Res. , 11,029, 11,039; 94.
Zander R., Gunson M.R., Farmer C.B., Rinsland C.P., Irion F.W., Mahieu E. (1992) The 1985 chlorine and fluorine inventories in the stratosphere based on ATMOS observations at 30° north latitudes. J. Atmos. Chem. 15:171-186.