Sontrop JM Dixon SN Garg AX Buendia-Jimenez I Dohein O Huang S-HS et al. Association between water intake, chronic kidney disease, and cardiovascular disease: a cross-sectional analysis of NHANES data. AJN. (2013) 37:434–42. 10.1159/00035037723594828
EFSA. Scientific opinion on dietary reference values for water. EFSA J. (2010) 8:1459. 10.2903/j.efsa.2010.1459
Guelinckx I Ferreira-Pêgo C Moreno LA Kavouras SA Gandy J Martinez H et al. Intake of water and different beverages in adults across 13 countries. Eur J Nutr. (2015) 54:45–55. 10.1007/s00394-015-0952-826072214
Strippoli GF Craig JC Rochtchina E Flood VM Wang JJ Mitchell P. Fluid and nutrient intake and risk of chronic kidney disease. Nephrology. (2011) 16:326–34. 10.1111/j.1440-1797.2010.01415.x21342326
Carroll HA Davis MG Papadaki A. Higher plain water intake is associated with lower type 2 diabetes risk: a cross-sectional study in humans. Nutr Res. (2015) 35:865–72. 10.1016/j.nutres.2015.06.01526255759
Poole R Kennedy OJ Roderick P Fallowfield JA Hayes PC Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. (2017) 359:j5024. 10.1136/bmj.j502429330262
Cano-Marquina A Tarín JJ Cano A. The impact of coffee on health. Maturitas. (2013) 75:7–21. 10.1016/j.maturitas.2013.02.00223465359
Ding M Bhupathiraju SN Satija A van Dam RM Hu FB. Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation. (2014) 129:643–59. 10.1161/CIRCULATIONAHA.113.00592524201300
Srithongkul T Ungprasert P. Coffee consumption is associated with a decreased risk of incident chronic kidney disease: a systematic review and meta-analysis of cohort studies. Eur J Intern Med. (2020) 77:111–6. 10.1016/j.ejim.2020.04.01832317238
Deshpande G Mapanga RF Essop MF. Frequent sugar-sweetened beverage consumption and the onset of cardiometabolic diseases: cause for concern? J Endocr Soc. (2017) 1:1372–85. 10.1210/js.2017-0026229264461
Malik VS Hu FB. Sugar-sweetened beverages and cardiometabolic health: an update of the evidence. Nutrients. (2019) 11:1840. 10.3390/nu1108184031398911
Rebholz CM Young BA Katz R Tucker KL Carithers TC Norwood AF et al. Patterns of beverages consumed and risk of incident kidney disease. Clin J Am Soc Nephrol. (2018) 2018:CJN.06380518. 10.2215/CJN.0638051830591520
Cicero AFG Fogacci F Desideri G Grandi E Rizzoli E D'Addato S et al. Arterial stiffness, sugar-sweetened beverages and fruits intake in a rural population sample: data from the brisighella heart study. Nutrients. (2019) 11:2674. 10.3390/nu1111267431694231
Wagner Sandra Lioret Sandrine Girerd Nicolas Duarte Kevin Lamiral Zohra Bozec Erwan et al. Association of dietary patterns derived using reduced-rank regression with subclinical cardiovascular damage according to generation and sex in the STANISLAS Cohort. J Am Heart Assoc. (2020) 9:e013836. 10.1161/JAHA.119.01383632200718
Marangoni F Pellegrino L Verduci E Ghiselli A Bernabei R Calvani R et al. Cow's milk consumption and health: a health professional's guide. J Am College Nutr. (2019) 38:197–208. 10.1080/07315724.2018.149101630247998
Godos J Tieri M Ghelfi F Titta L Marventano S Lafranconi A et al. Dairy foods and health: an umbrella review of observational studies. Int J Food Sci Nutr. (2020) 71:138–51. 10.1080/09637486.2019.162503531199182
PNNS. Available online at: https://www.mangerbouger.fr/Les-recommandationsconsultéle (accessed November 10, 2020).
Krebs-Smith SM Pannucci TE Subar AF Kirkpatrick SI Lerman JL Tooze JA et al. Update of the healthy eating index: HEI-2015. J Acad Nutr Diet. (2018) 118:1591–602. 10.1016/j.jand.2018.05.02130146071
McCullough ML Feskanich D Stampfer MJ Giovannucci EL Rimm EB Hu FB et al. Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. Am J Clin Nutr. (2002) 76:1261–71. 10.1093/ajcn/76.6.126112450892
Duffey KJ Davy BM. The healthy beverage index is associated with reduced cardiometabolic risk in US adults: a preliminary analysis. J Acad Nutr Dietetics. (2015) 115:1682–9.e2. 10.1016/j.jand.2015.05.00526184445
Ferreira JP Girerd N Bozec E Mercklé L Pizard A Bouali S et al. Cohort profile: Rationale and design of the fourth visit of the STANISLAS cohort: a familial longitudinal population-based cohort from the Nancy region of France. Int J Epidemiol. (2018) 47:395j. 10.1093/ije/dyx24029220499
Sauvageot N Alkerwi A Adelin A Guillaume M. Validation of the food frequency questionnaire used to assess the association between dietary habits and cardiovascular risk factors in the NESCAV Study. J Nutr Food Sci. (2013) 12:143. 10.1186/1475-2891-12-14324195492
Després J-P Cartier A Côté M Arsenault BJ. The concept of cardiometabolic risk: Bridging the fields of diabetology and cardiology. Ann Med. (2008) 40:514–23. 10.1080/0785389080200495918608131
Expert Panel on Detection E. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. (2001) 285:2486–97. 10.1001/jama.285.19.248611368702
Chau K Girerd N Bozec E Ferreira JP Duarte K Nazare J-A et al. Association between abdominal adiposity and 20-year subsequent aortic stiffness in an initially healthy population-based cohort. J Hyperten. (2018) 36:2077. 10.1097/HJH.000000000000179629878971
Bortel LMV Laurent S Boutouyrie P Chowienczyk P Cruickshank J k Backer TD et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hyperten. (2012) 30:445–8. 10.1097/HJH.0b013e32834fa8b022278144
Ferreira JP Girerd N Bozec E Machu JL Boivin J-M London GM et al. Intima-media thickness is linearly and continuously associated with systolic blood pressure in a population-based cohort (STANISLAS Cohort Study). J Am Heart Assoc. (2016) 5:3529. 10.1161/JAHA.116.00352927312804
Bozec E Girerd N Ferreira JP Latar I Zannad F Rossignol P. Reproducibility in echotracking assessment of local carotid stiffness, diameter and thickness in a population-based study (The STANISLAS Cohort Study). Artery Res. (2020) 26:5–12. 10.2991/artres.k.200314.001
Coiro S Huttin O Bozec E Selton-Suty C Lamiral Z Carluccio E et al. Reproducibility of echocardiographic assessment of 2D-derived longitudinal strain parameters in a population-based study (the STANISLAS Cohort study). Int J Cardiovasc Imaging. (2017) 33:1361–9. 10.1007/s10554-017-1117-z28364176
Frikha Z Girerd N Huttin O Courand PY Bozec E Olivier A et al. Reproducibility in echocardiographic assessment of diastolic function in a population based study (The STANISLAS Cohort Study). PLoS ONE. (2015) 10:e0122336. 10.1371/journal.pone.012233625853818
Cuspidi C Giudici V Negri F Meani S Sala C Zanchetti A et al. Improving cardiovascular risk stratification in essential hypertensive patients by indexing left ventricular mass to height(2.7). J Hypertens. (2009) 27:2465–71. 10.1097/HJH.0b013e32833105a619898252
de Simone G Devereux RB Daniels SR Koren MJ Meyer RA Laragh JH. Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol. (1995) 25:1056–62. 10.1016/0735-1097(94)00540-77897116
Levey AS Stevens LA Schmid CH Zhang YL Castro AF Feldman HI et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. (2009) 150:604–12. 10.7326/0003-4819-150-9-200905050-0000619414839
Lopez-Sublet M Girerd N Bozec E Machu J-L Ferreira JP Zannad F et al. Nondipping pattern and cardiovascular and renal damage in a population-based study (The Stanislas Cohort Study). Am J Hypertens. (2019) 32:620–8. 10.1093/ajh/hpz02030753257
Kuznetsova A Brockhoff PB Christensen RHB. lmerTest package: tests in linear mixed effects models. J Statistical Softw. (2017) 82:1–26. 10.18637/jss.v082.i13
Brooks ME Kristensen K Benthem KJ van Magnusson A Berg CW Nielsen A et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. (2017) 9:378–400. 10.32614/RJ-2017-066
Tuorila H. Individual and cultural factors in the consumption of beverages. In: Ramsay DJ, Booth D, editors. Thirst ILSI Human Nutrition Reviews. London: Springer. 10.1007/978-1-4471-1817-6_22
de Castro JM Bellisle F Feunekes GIJ Dalix A-M De Graaf C. Culture and meal patterns: A comparison of the food intake of free-living American, Dutch, and French students. Nutr Res. (1997) 17:807–29. 10.1016/S0271-5317(97)00050-X
Bellisle F Thornton SN Hébel P Denizeau M Tahiri M. A study of fluid intake from beverages in a sample of healthy French children, adolescents and adults. Eur J Clin Nutr. (2010) 64:350–5. 10.1038/ejcn.2010.420160751
Vieux F Maillot M Rehm CD Barrios P Drewnowski A. Trends in tap and bottled water consumption among children and adults in the United States: analyses of NHANES 2011-16 data. Nutr J. (2020) 19:10. 10.1186/s12937-020-0523-631996207
Drewnowski A Rehm CD Constant F. Water and beverage consumption among adults in the United States: cross-sectional study using data from NHANES 2005-2010. BMC Public Health. (2013) 13:1068. 10.1186/1471-2458-13-106824219567
Singh GM Micha R Khatibzadeh S Shi P Lim S Andrews KG et al. Global, regional, and national consumption of sugar-sweetened beverages, fruit juices, and milk: a systematic assessment of beverage intake in 187 countries. PLoS ONE. (2015) 10:e0124845. 10.1371/journal.pone.012484530917182
Guelinckx I Tavoularis G König J Morin C Gharbi H Gandy J. Contribution of water from food and fluids to total water intake: analysis of a French and UK population surveys. Nutrients. (2016) 8:630. 10.3390/nu810063027754402
Lecerf J-M Mathiot L Hebel P. Conditions surrounding beverage consumption by the French. Curr Res Nutr Food Sci J. (2019) 7:112–27. 10.12944/CRNFSJ.7.1.12
Avis de l'Anses. Étude individuelle nationale des consommations alimentaires 3 (INCA 3). Rapport d'expertise collective (2017)
Malik VS Pan A Willett WC Hu FB. Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis. Am J Clin Nutr. (2013) 98:1084–102. 10.3945/ajcn.113.05836223966427
Malik VS Popkin BM Bray GA Després J-P Willett WC Hu FB. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care. (2010) 33:2477–83. 10.2337/dc10-107920693348
Imamura F O'Connor L Ye Z Mursu J Hayashino Y Bhupathiraju SN et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. Br J Sports Med. (2016) 50:496–504. 10.1136/bjsports-2016-h3576rep27044603
Ferreira-Pêgo C Babio N Bes-Rastrollo M Corella D Estruch R Ros E et al. Frequent consumption of sugar- and artificially sweetened beverages and natural and bottled fruit juices is associated with an increased risk of metabolic syndrome in a mediterranean population at high cardiovascular disease risk. J Nutr. (2016) 146:1528–36. 10.3945/jn.116.23036727358413
Keller A Heitmann BL Olsen N. Sugar-sweetened beverages, vascular risk factors and events: a systematic literature review. Public Health Nutr. (2015) 18:1145–54. 10.1017/S136898001400212225321082
Narain A Kwok CS Mamas MA. Soft drinks and sweetened beverages and the risk of cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Clin Practice. (2016) 70:791–805. 10.1111/ijcp.1284127456347
Wang D Karvonen-Gutierrez CA Jackson EA Elliott MR Appelhans BM Barinas-Mitchell E et al. Prospective associations between beverage intake during the midlife and subclinical carotid atherosclerosis: The Study of Women's Health Across the Nation. PLoS ONE. (2019) 14:e0219301. 10.1371/journal.pone.021930131291324
Popkin BM D'Anci KE Rosenberg IH. Water, hydration, and health. Nutr Rev. (2010) 68:439–58. 10.1111/j.1753-4887.2010.00304.x20646222
Callegaro CC Moraes RS Negrão CE Trombetta IC Rondon MU Teixeira MS et al. Acute water ingestion increases arterial blood pressure in hypertensive and normotensive subjects. J Human Hyperten. (2007) 21:564–70. 10.1038/sj.jhh.100218817344908
O'Neill D Britton A Brunner EJ Bell S. Twenty-five-year alcohol consumption trajectories and their association with arterial aging: a prospective cohort study. J Am Heart Assoc. (2017) 6:5288. 10.1161/JAHA.116.00528828219925
Humphries K Izadnegadar M Sedlak T Saw J Johnston N Schenck-Gustafsson K et al. Sex differences in cardiovascular disease - impact on care and outcomes. Front Neuroendocrinol. (2017) 46:46–70. 10.1016/j.yfrne.2017.04.00128428055
Tousoulis D Ntarladimas I Antoniades C Vasiliadou C Tentolouris C Papageorgiou N et al. Acute effects of different alcoholic beverages on vascular endothelium, inflammatory markers and thrombosis fibrinolysis system. Clin Nutr. (2008) 27:594–600. 10.1016/j.clnu.2008.01.00218295937
Ricci-Cabello I Olalla Herrera M Artacho R. Possible role of milk-derived bioactive peptides in the treatment and prevention of metabolic syndrome. Nutr Rev. (2012) 70:241–55. 10.1111/j.1753-4887.2011.00448.x22458697
Dehghan M Mente A Rangarajan S Sheridan P Mohan V Iqbal R et al. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study. Lancet. (2018) 392:2288–97. 10.1016/S0140-6736(18)31812-930217460
Lordan R Tsoupras A Mitra B Zabetakis I. Dairy fats and cardiovascular disease: do we really need to be concerned? Foods. (2018) 7:29. 10.3390/foods703002929494487
Drouin-Chartier J-P Brassard D Tessier-Grenier M Côté JA Labonté M-È Desroches S et al. Systematic review of the association between dairy product consumption and risk of cardiovascular-related clinical outcomes. Adv Nutr. (2016) 7:1026–40. 10.3945/an.115.01140328140321
Crichton GE Alkerwi A. Dairy food intake is positively associated with cardiovascular health: findings from Observation of Cardiovascular Risk Factors in Luxembourg study. Nutr Res. (2014) 34:1036–44. 10.1016/j.nutres.2014.04.00225476191
Herber-Gast G-CM Biesbroek S Verschuren WM Stehouwer CD Gansevoort RT Bakker SJ et al. Association of dietary protein and dairy intakes and change in renal function: results from the population-based longitudinal Doetinchem cohort study. Am J Clin Nutr. (2016) 104:1712–9. 10.3945/ajcn.116.13767927935525
Wijarnpreecha K Thongprayoon C Thamcharoen N Panjawatanan P Cheungpasitporn W. Association of coffee consumption and chronic kidney disease: A meta-analysis. Int J Clin Practice. (2017) 71:e12919. 10.1111/ijcp.1291927933694
Kanbay M Siriopol D Copur S Tapoi L Benchea L Kuwabara M et al. Effect of coffee consumption on renal outcome: a systematic review and meta-analysis of clinical studies. J Renal Nutr. (2020) 31:5–20. 10.1053/j.jrn.2020.08.00432958376
Guideline: sugars intake for adults and children. Available online at: https://www.who.int/publications-detail-redirect/9789241549028 (accessed November 12, 2020).