Algeo, T., Rowe, H., Hower, J. C., Schwark, L., Herrmann, A., & Heckel, P. (2008). Changes in ocean denitrification during Late Carboniferous glacial–interglacial cycles. Nature Geoscience, 1(10), 709–714. https://doi.org/10.1038/ngeo307
Algeo, T. J., Berner, R. A., Maynard, J. B., & Scheckler, S. E. (1995). Late Devonian oceanic anoxic events and biotic crises: “rooted” in the evolution of vascular land plants. Geological Society of America Today, 5, 45–66.
Algeo, T. J., Lyons, T. W., Blakey, R. C., & Over, D. J. (2007). Hydrographic conditions of the Devono–Carboniferous North American Seaway inferred from sedimentary Mo–TOC relationships. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3–4), 204–230. https://doi.org/10.1016/j.palaeo.2007.02.035
Algeo, T. J., Meyers, P. A., Robinson, R. S., Rowe, H., & Jiang, G. Q. (2014). Icehouse–greenhouse variations in marine denitrification. Biogeosciences, 11(4), 1273–1295. https://doi.org/10.5194/bg-11-1273-2014
Algeo, T. J., & Tribovillard, N. (2009). Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chemical Geology, 268(3–4), 211–225. https://doi.org/10.1016/j.chemgeo.2009.09.001
Altabet, M. A. (2007). Constraints on oceanic N balance/imbalance from sedimentary 15N records. Biogeosciences, 4(1), 75–86. https://doi.org/10.5194/bg-4-75-2007
Averbuch, O., Tribovillard, N., Devleeschouwer, X., Riquier, L., Mistiaen, B., & Vliet-Lanoe, V. (2005). Mountain building-enhanced continental weathering and organic carbon burial as major causes for climatic cooling at the Frasnian–Famennian boundary (c. 376 Ma)? Terra Nova, 17(1), 25–34. https://doi.org/10.1111/j.1365-3121.2004.00580.x
Balter, V., Renaud, S., Girard, C., & Joachimski, M. M. (2008). Record of climate-driven morphological changes in 376 Ma Devonian fossils. Geology, 36(11), 907–910. https://doi.org/10.1130/G24989A.1
Bartlett, R., Elrick, M., Wheeley, J. R., Polyak, V., Desrochers, A., & Asmerom, Y. (2018). Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates. Proceedings of the National Academy of Sciences, 115(23), 5896–5901. https://doi.org/10.1073/pnas.1802438115
Behar, F., Beaumont, V., de, B., & Penteado, H. L. (2001). Rock-Eval 6 technology: Performances and developments. Oil and Gas Science and Technology, 56(2), 111–134. https://doi.org/10.2516/ogst:2001013
Bond, D. P., & Grasby, S. E. (2017). On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 3–29. https://doi.org/10.1016/j.palaeo.2016.11.005
Bond, D. P. G., Wignall, P. B., & Racki, G. (2004). Extent and duration of marine anoxia during the Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine, 141(2), 173–193. https://doi.org/10.1017/S0016756804008866
Bond, D. P. G., & Zatoń, M. (2003). Gamma-ray spectrometry across the Upper Devonian basin succession at Kowala in the Holy Cross Mountains (Poland). Acta Geologica Polonica, 53, 93–99.
Calvert, S. E. (2004). Beware intercepts: Interpreting compositional ratios in multi-component sediments and sedimentary rocks. Organic Geochemistry, 35(8), 981–987. https://doi.org/10.1016/j.orggeochem.2004.03.001
Carmichael, S. K., Waters, J. A., Königshof, P., Suttner, T. J., & Kido, E. (2019). Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression. Global and Planetary Change, 183, 102984. https://doi.org/10.1016/j.gloplacha.2019.102984
Carmichael, S. K., Waters, J. A., Suttner, T. J., Kido, E., & DeReuil, A. A. (2014). A new model for the Kellwasser Anoxia Events (Late Devonian): Shallow water anoxia in an open oceanic setting in the Central Asian Orogenic Belt. Palaeogeography, Palaeoclimatology, Palaeoecology, 399, 394–403. https://doi.org/10.1016/j.palaeo.2014.02.016
Casier, J. G. (2017). Ecology of Devonian ostracods: Application to the Frasnian/Famennian boundary bioevent in the type region (Dinant Synclinorium, Belgium). Palaeobiodiversity and Palaeoenvironments, 97(3), 553–564. https://doi.org/10.1007/s12549-017-0278-z
Casier, J. G., & Devleeschouwer, X. (1995). Arguments (ostracodes) pour une régression culminant à proximite de la limite Frasnien–Famennien à Sinsin (Vol. 65, p. 51–68). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique: Sciences de la Terre.
Chen, Y., Diamond, C. W., Stüeken, E. E., Cai, C., Gill, B. C., Zhang, F., et al. (2019). Coupled evolution of nitrogen cycling and redoxcline dynamics on the Yangtze Block across the Ediacaran-Cambrian transition. Geochimica et Cosmochimica Acta, 257, 243–265. https://doi.org/10.1016/j.gca.2019.05.017
Claeys, P., Kyte, F. T., Herbosch, A., & Casier, J. G. (1996). Geochemistry of the Frasnian-Famennian boundary in Belgium: Mass extinction, anoxic oceans and microtektite layer, but not much iridium? Geological Society of America Special Paper, 307, 491–504. https://doi.org/10.1130/0-8137-2307-8.491
Clifford, D. J., Clayton, J. L., & Sinninghe Damsté, J. S. (1998). 2,3,6-/3,4,5-Trimethyl substituted diaryl carotenoid derivatives (Chlorobiaceae) in petroleums of the Belarussian Pripyat River Basin. Organic Geochemistry, 29(5–7), 1253–1267. https://doi.org/10.1016/S0146-6380(98)00086-2
Cui, Y., Shen, B., Sun, Y., Ma, H., Chang, J., Li, F., et al. (2021). A pulse of seafloor oxygenation at the Late Devonian Frasnian-Famennian boundary in South China. Earth-Science Reviews, 218, 103651. https://doi.org/10.1016/j.earscirev.2021.103651
Dale, A. W., Boyle, R. A., Lenton, T. M., Ingall, E. D., & Wallmann, K. (2016). A model for microbial phosphorus cycling in bioturbated marine sediments: Significance for phosphorus burial in the early Paleozoic. Geochimica et Cosmochimica Acta, 189, 251–268. https://doi.org/10.1016/j.gca.2016.05.046
Danzelle, J., Riquier, L., Baudin, F., Thomazo, C., & Pucéat, E. (2020). Nitrogen and carbon cycle perturbations through the Cenomanian-Turonian oceanic anoxic event 2 (∼94 Ma) in the Vocontian Basin (SE France). Palaeogeography, Palaeoclimatology, Palaeoecology, 538, 109443. https://doi.org/10.1016/j.palaeo.2019.109443
Da Silva, A. C., Sinnesael, M., Claeys, P., Davies, J. H. F. L., deWinter, N. J., Percival, L. M. E., et al. (2020). Anchoring the Late Devonian mass extinction in absolute time by integrating climatic controls and radio-isotopic dating. Scientific Reports, 10(1), 12940. https://doi.org/10.1038/s41598-020-69097-6
Day, J., & Witzke, B. J. (2017). Upper Devonian biostratigraphy, event stratigraphy, and Late Frasnian Kellwasser extinction bioevents in the Iowa Basin: Western Euramerica. In M. Montenari(Ed.), Stratigraphy & Timescales (Vol. 2, p. 243–332). https://doi.org/10.1016/bs.sats.2017.08.002
de la Rue, S. R., Rowe, H. D., & Rimmer, S. M. (2007). Palynological and bulk geochemical constraints on the paleoceanographic conditions across the Frasnian–Famennian boundary, New Albany Shale, Indiana. International Journal of Coal Geology, 71(1), 72–84. https://doi.org/10.1016/j.coal.2006.06.003
De Vleeschouwer, D., Da Silva, A. C., Sinnesael, M., Chen, D., Day, J. E., Whalen, M. T., et al. (2017). Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nature Communications, 8(1), 1–11. https://doi.org/10.1038/s41467-017-02407-1
De Vleeschouwer, D., Rakociński, M., Racki, G., Bond, D. P. G., Sobień, K., & Claeys, P. (2013). The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland). Earth and Planetary Science Letters, 365, 25–37. https://doi.org/10.1016/j.epsl.2013.01.016
Dumitrescu, M., & Brassell, S. C. (2006). Compositional and isotopic characteristics of organic matter for the early Aptian Oceanic Anoxic Event at Shatsky Rise, ODP Leg 198. Palaeogeography, Palaeoclimatology, Palaeoecology, 235(1–3), 168–191. https://doi.org/10.1016/j.palaeo.2005.09.028
Elling, F. J., Hemingway, J. D., Kharbush, J. J., Becker, K. W., Polik, C. A., & Pearson, A. (2021). Linking diatom-diazotroph symbioses to nitrogen cycle perturbations and deep-water anoxia: Insights from Mediterranean sapropel events. Earth and Planetary Science Letters, 571, 117110. https://doi.org/10.1016/j.epsl.2021.117110
Espitalié, J., Deroo, G., & Marquis, F. (1985). Rock-Eval Pyrolysis and its Applications. Revue de l'Institut Français du Petrole, 40(5), 563–579. https://doi.org/10.2516/ogst:1985035
Fielitz, W., & Mansy, J. L. (1999). Pre-and synorogenic burial metamorphism in the Ardenne and neighbouring areas (Rhenohercynian zone, central European Variscides). Tectonophysics, 309(1–4), 227–256. https://doi.org/10.1016/S0040-1951(99)00141-9
Freudenthal, T., Wagner, T., Wenzhöfer, F., Zabel, M., & Wefer, G. (2001). Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: Evidence from stable nitrogen and carbon isotopes. Geochimica et Cosmochimica Acta, 65(11), 1795–1808. https://doi.org/10.1016/S0016-7037(01)00554-3
Girard, C., Klapper, G., & Feist, R. (2005). Subdivision of the terminal Frasnian linguiformis conodont Zone, revision of the correlative interval of Montagne Noire Zone 13, and discussion of stratigraphically significant associated trilobites. In D. J. Over, J. R. Morrow, & P. B. Wignall, (Eds.), Understanding Late Devonian and Permian-Triassis Biotic and Climatic Events: Towards an Integrated Approach. Developments in Palaeontology and Stratigraphy (Vol. 20, p. 181–198). https://doi.org/10.1016/S0920-5446(05)80007-X
Grice, K., Schaeffer, P., Schwark, L., & Maxwell, J. R. (1997). Changes in palaeoenvironmental conditions during deposition of the Permian Kupferschiefer (Lower Rhine Basin, northwest Germany) inferred from molecular and isotopic compositions of biomarker components. Organic Geochemistry, 26(11–12), 677–690. https://doi.org/10.1016/S0146-6380(97)00036-3
Haddad, E. E., Tuite, M. L., Martinez, A. M., Williford, K., Boyer, D. L., Droser, M. L., & Love, G. D. (2016). Lipid biomarker stratigraphic records through the Late Devonian Frasnian/Famennian boundary: Comparison of high-and low-latitude epicontinental marine settings. Organic Geochemistry, 98, 38–53. https://doi.org/10.1016/j.orggeochem.2016.05.007
Helsen, S. (1995). Burial history of Palaeozoic strata in Belgium as revealed by conodont colour alteration data and thickness distributions. Geologische Rundschau, 84(4), 738–747. https://doi.org/10.1007/BF00240564
Higgins, M. B., Robinson, R. S., Carter, S. J., & Pearson, A. (2010). Evidence from chlorin nitrogen isotopes for alternating nutrient regimes in the Eastern Mediterranean Sea. Earth and Planetary Science Letters, 290(1–2), 102–107. https://doi.org/10.1016/j.epsl.2009.12.009
Higgins, M. B., Robinson, R. S., Husson, J. M., Carter, S. J., & Pearson, A. (2012). Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH4+. Proceedings of the National Academy of Sciences of the United States of America, 109(7), 2269–2274. https://doi.org/10.1073/pnas.1104313109
Jenkyns, H. C. (2010). Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11(3), Q03004. https://doi.org/10.1029/2009GC002788
Jenkyns, H. C., Gröcke, D. R., & Hesselbo, S. P. (2001). Nitrogen isotope evidence for water mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography, 16(6), 593–603. https://doi.org/10.1029/2000PA000558
Jenkyns, H. C., Matthews, A., Tsikos, H., & Erel, Y. (2007). Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event. Paleoceanography, 22(3), PA3208. https://doi.org/10.1029/2006PA001355
Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J. A., Mawson, R., Gereke, M., et al. (2009). Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 284(3–4), 599–609. https://doi.org/10.1016/j.epsl.2009.05.028
Joachimski, M. M., & Buggisch, W. (2002). Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology, 30(8), 711–714. https://doi.org/10.1130/0091-7613(2002)030<0711:CAOSIC>2.0.CO;2
Joachimski, M. M., Ostertag-Henning, C., Pancost, R. D., Strauss, H., Freeman, K. H., Littke, R., et al. (2001). Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian–Famennian boundary (Kowala—Holy Cross Mountains/Poland). Chemical Geology, 175(1–2), 109–131. https://doi.org/10.1016/S0009-2541(00)00365-X
Joachimski, M. M., Pancost, R. D., Freeman, K. H., Ostertag-Henning, C., & Buggisch, W. (2002). Carbon isotope geochemistry of the Frasnian–Famennian transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 181(1–3), 91–109. https://doi.org/10.1016/S0031-0182(01)00474-6
Junium, C. K., & Arthur, M. A. (2007). Nitrogen cycling during the Cretaceous, Cenomanian-Turonian oceanic anoxic event II. Geochemistry, Geophysics, Geosystems, 8(3), Q03002. https://doi.org/10.1029/2006GC001328
Junium, C. K., Dickson, A. J., & Uveges, B. T. (2018). Perturbation to the nitrogen cycle during rapid Early Eocene global warming. Nature Communications, 9(1), 3186. https://doi.org/10.1038/s41467-018-05486-w
Kaiho, K., Yatsu, S., Oba, M., Gorjan, P., Casier, J. G., & Ikeda, M. (2013). A forest fire and soil erosion event during the Late Devonian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 272–280. https://doi.org/10.1016/j.palaeo.2013.09.008
Kast, E. R., Stolper, D. A., Auderset, A., Higgins, J. A., Ren, H., Wang, X. T., et al. (2019). Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic. Science, 364(6438), 386–389. https://doi.org/10.1126/science.aau5784
Kemp, D. B., Baranyi, V., Izumi, K., & Burgess, R. D. (2019). Organic matter variations and links to climate across the early Toarcian oceanic anoxic event (T-OAE) in Toyora area, southwest Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 530, 90–102. https://doi.org/10.1016/j.palaeo.2019.05.040
Klapper, G., & Kirchgasser, W. T. (2016). Frasnian Late Devonian conodont biostratigraphy in New York: Graphic correlation and taxonomy. Journal of Paleontology, 90(3), 525–554. https://doi.org/10.1017/jpa.2015.70
Koehler, M. C., Stüeken, E. E., Hillier, S., & Prave, A. R. (2019). Limitation of fixed nitrogen and deepening of the carbonate-compensation depth through the Hirnantian at Dob's Linn, Scotland. Palaeogeography. Palaeoclimatology, Palaeoecology, 534, 109321. https://doi.org/10.1016/j.palaeo.2019.109321
Koopmans, M. P., Köster, J., VanKaam-Peters, H. M. E., Kenig, F., Schouten, S., Hartgers, W. A., et al. (1996). Diagenetic and catagenetic products of isorenieratene: Molecular indicators for photic zone anoxia. Geochimica et Cosmochimica Acta, 60(22), 4467–4496. https://doi.org/10.1016/S0016-7037(96)00238-4
Korth, F., Deutsch, B., Frey, C., Moros, C., & Voss, M. (2014). Nitrate source identification in the Baltic Sea using its isotopic ratios in combination with a Bayesian isotope mixing model. Biogeosciences, 11(17), 4913–4924. https://doi.org/10.5194/bg-11-4913-2014
Lehmann, M. F., Bernasconi, S. M., Barbieri, A., & McKenzie, J. A. (2002). Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta, 66(20), 3573–3584. https://doi.org/10.1016/S0016-7037(02)00968-7
Levman, B. G., & Von Bitter, P. H. (2002). The Frasnian–Famennian (mid-Late Devonian) boundary in the type section of the Long Rapids Formation, James Bay Lowlands, northern Ontario, Canada. Canadian Journal of Earth Sciences, 39(12), 1795–1818. https://doi.org/10.1139/e02-073
Liu, Z., Percival, L. M. E., Vandeputte, D., Selby, D., Claeys, P., Over, D. J., & Gao, Y. (2021). Late Devonian mercury record from North America and its implications for the Frasnian–Famennian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 576, 110502. https://doi.org/10.1016/j.palaeo.2021.110502
Marconi, D., Sigman, D. M., Casciotti, K. L., Campbell, E. C., Weigand, M. A., Fawcett, S. E., et al. (2017). Tropical Dominance of N2 Fixation in the North Atlantic Ocean. Global Biogeochemical Cycles, 31(10), 1608–1623. https://doi.org/10.1002/2016GB005613
Marynowski, L., Rakociński, M., Borcuch, E., Kremer, B., Schubert, B. A., & Jahren, A. H. (2011). Molecular and petrographic indicators of redox conditions and bacterial communities after the F/F mass extinction (Kowala, Holy Cross Mountains, Poland). Palaeogeography, Palaeoclimatology, Palaeoecology, 306(1–2), 1–14. https://doi.org/10.1016/j.palaeo.2011.03.018
Meyers, P. A., Bernasconi, S. M., & Forster, A. (2006). Origins and accumulation of organic matter in expanded Albian to Santonian black shale sequences on the Demerara Rise, South American margin. Organic Geochemistry, 37(12), 1816–1830. https://doi.org/10.1016/j.orggeochem.2006.08.009
Naafs, B. D. A., Monteiro, F. M., Pearson, A., Higgins, M. B., Pancost, R. D., & Ridgwell, A. (2019). Fundamentally different global marine nitrogen cycling in response to severe ocean deoxygenation. Proceedings of the National Academy of Sciences, 116(50), 24979–24984. https://doi.org/10.1073/pnas.1905553116
Ostrander, C. M., Owens, J. D., & Nielsen, S. G. (2017). Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ∼94 Ma). Science Advances, 3(8), e1701020. https://doi.org/10.1126/sciadv.1701020
Percival, L. M. E., Bond, D. P. G., Rakociński, M., Marynowski, L., Hood, A. v. S., Adatte, T., et al. (2020). Phosphorus-cycle disturbances during the Late Devonian anoxic events. Global and Planetary Change, 184, 103070. https://doi.org/10.1016/j.gloplacha.2019.103070
Percival, L. M. E., Selby, D., Bond, D. P. G., Rakociński, M., Racki, G., Marynowski, L., et al. (2019). Pulses of enhanced continental weathering associated with multiple Late Devonian climate perturbations: Evidence from osmium-isotope compositions. Palaeogeography, Palaeoclimatology, Palaeoecology, 524, 240–249. https://doi.org/10.1016/j.palaeo.2019.03.036
Pujol, F., Berner, Z., & Stüben, D. (2006). Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections: Chemostratigraphic constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1–2), 120–145. https://doi.org/10.1016/j.palaeo.2006.03.055
Qie, W., Algeo, T. J., Luo, G., & Herrmann, A. (2019). Global events of the Late Paleozoic (Early Devonian to Middle Permian): A review. Palaeogeography, Palaeoclimatology, Palaeoecology, 531, 109259. https://doi.org/10.1016/j.palaeo.2019.109259
Racki, G. (2020). A volcanic scenario for the Frasnian–Famennian major biotic crisis and other Late Devonian global changes: More answers than questions? Global and Planetary Change, 189, 103174. https://doi.org/10.1016/j.gloplacha.2020.103174
Racki, G., Racka, M., Matyja, H., & Devleeschouwer, X. (2002). The Frasnian/Famennian boundary interval in the South Polish–Moravian shelf basins: Integrated event-stratigraphical approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 181(1–3), 251–297. https://doi.org/10.1016/S0031-0182(01)00481-3
Robinson, S. A., Heimhofer, U., Hesselbo, S. P., & Petrizzo, M. R. (2017). Mesozoic climates and oceans—A tribute to Hugh Jenkyns and Helmut Weissert. Sedimentology, 64, 1–15. https://doi.org/10.1111/sed.12349
Ruvalcaba Baroni, I., van Helmond, N. A. G. M., Tsandev, I., Middelburg, J. J., & Slomp, C. P. (2015). The nitrogen isotope composition of sediments from the proto-North Atlantic during Oceanic Anoxic Event 2. Paleoceanography, 30(7), 923–937. https://doi.org/10.1002/2014PA002744
Sageman, B. B., Murphy, A. E., Werne, J. P., Ver Straeten, C. A., Hollander, D. J., & Lyons, T. W. (2003). A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin. Chemical Geology, 195(1–4), 229–273. https://doi.org/10.1016/S0009-2541(02)00397-2
Sandberg, C. A., Morrow, J. R., & Ziegler, W. (2002). Late Devonian sea-level changes, catastrophic events, and mass extinctions (Vol. 356, p. 473–487). Geological Society of America Special Papers. https://doi.org/10.1130/0-8137-2356-6.473
Sandberg, C. A., Ziegler, W., Dreesen, R., & Butler, J. L. (1988). Late Frasnian extinction: Conodont event stratigraphy, global changes, and possible causes. Courier Forschunginstitut Senckenberg, 102, 263–307.
Schubert, C. J., & Calvert, S. E. (2001). Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: Implications for nutrient utilization and organic matter composition. Deep Sea Research Part I: Oceanographic Research Papers, 48(3), 789–810. https://doi.org/10.1016/S0967-0637(00)00069-8
Sigman, D. M., & Fripiat, F. (2019). Nitrogen isotopes in the ocean. In J. Cochran, H. Bokuniewicz, & P. Yager, (Eds.), Encyclopedia of ocean sciences (3rd ed., pp. 263–278). Elsevier.
Song, H., Song, H., Algeo, T. J., Tong, J., Romaniello, S. J., Zhu, Y., et al. (2017). Uranium and carbon isotopes document global-ocean redox-productivity relationships linked to cooling during the Frasnian-Famennian mass extinction. Geology, 45(10), 887–890. https://doi.org/10.1130/G39393.1
Spalletta, C., Perri, M. C., Over, D. J., & Corradini, C. (2017). Famennian (Upper Devonian) conodont zonation: Revised global standard. Bulletin of Geosciences, 92, 31–57. https://doi.org/10.3140/bull.geosci.1623
Summons, R. E., & Jahnke, L. L. (1990). Identification of the methylhopanes in sediments and petroleum. Geochimica et Cosmochimica Acta, 54(1), 247–251. https://doi.org/10.1016/0016-7037(90)90212-4
Summons, R. E., Jahnke, L. L., Hope, J. M., & Logan, G. A. (1999). 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400(6744), 554–557. https://doi.org/10.1038/23005
Summons, R. E., & Powell, T. G. (1987). Identification of aryl isoprenoids in source rocks and crude oils: Biological markers for the green sulphur bacteria. Geochimica et Cosmochimica Acta, 51(3), 557–566. https://doi.org/10.1016/0016-7037(87)90069-X
Sun, Y. D., Zulla, M. J., Joachimski, M. M., Bond, D. P. G., Wignall, P. B., Zhang, Z. T., & Zhang, M. H. (2019). Ammonium Ocean following the end-Permian mass extinction. Earth and Planetary Science Letters, 518, 211–222. https://doi.org/10.1016/j.epsl.2019.04.036
Szulczewski, M. (1996). Devonian succession in the Kowala quarry and railroad cut. In Sixth European conodont symposium (ECOS VI) (p. 27–30).
Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265. https://doi.org/10.1029/95RG00262
Thunell, R. C., Sigman, D. M., Muller-Karger, F., Astor, Y., & Varela, R. (2004). Nitrogen isotope dynamics of the Cariaco Basin, Venezuela. Global Biogeochemical Cycles, 18(3). https://doi.org/10.1029/2003GB002185
Tuite, M. L., Williford, K. H., & Macko, S. A. (2019). From greenhouse to icehouse: Nitrogen biogeochemistry of an epeiric sea in the context of the oxygenation of the Late Devonian atmosphere/ocean system. Palaeogeography, Palaeoclimatology, Palaeoecology, 531, 109204. https://doi.org/10.1016/j.palaeo.2019.05.026
Uveges, B. T., Junium, C. K., Boyer, D. L., Cohen, P. A., & Day, J. E. (2019). Biogeochemical controls on black shale deposition during the Frasnian-Famennian biotic crisis in the Illinois and Appalachian Basins, USA, inferred from stable isotopes of nitrogen and carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 531, 108787. https://doi.org/10.1016/j.palaeo.2018.05.031
Voss, M., Emeis, K. C., Hille, S., Neumann, T., & Dippner, J. W. (2005). Nitrogen cycle of the Baltic Sea from an isotopic perspective. Global Biogeochemical Cycles, 19(3). https://doi.org/10.1029/2004GB002338
Wada, E., Minagawa, M., Mizutani, H., Tsuji, T., Imaizumi, R., & Karasawa, K. (1987). Biogeochemical studies on the transport of organic matter along the Otsuchi River watershed, Japan. Estuarine, Coastal and Shelf Science, 25(3), 321–336. https://doi.org/10.1016/0272-7714(87)90075-8
Welander, P. V., Coleman, M. L., Sessions, A. L., Summons, R. E., & Newman, D. K. (2010). Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8537–8542. https://doi.org/10.1073/pnas.0912949107
Whalen, M. T., Śliwiński, M. G., Payne, J. H., Day, J. E., Chen, D., & Da Silva, A. C. (2015). Chemostratigraphy and magnetic susceptibility of the Late Devonian Frasnian–Famennian transition in western Canada and southern China: Implications for carbon and nutrient cycling and mass extinction. In A. C. Da Silva, M. T. Whalen, J. Hladil, L. Chadimova, D. Chen, S. Spassov, et al., (Eds.), Magnetic susceptibility application: A window onto ancient environments and climatic variations (Vol. 414, p. 37–72). Geological Society, London, Special Publications. https://doi.org/10.1144/SP414.8
White, D. A., Elrick, M., Romaniello, S., & Zhang, F. (2018). Global seawater redox trends during the Late Devonian mass extinction detected using U isotopes of marine limestones. Earth and Planetary Science Letters, 503, 68–77. https://doi.org/10.1016/j.epsl.2018.09.020
Witzke, B. J., & Bunker, B. J. (2002). Bedrock geology in the Burlington area, southeast Iowa. In Iowa geological Survey guidebook, 23, p. 23–48.
Zhang, X., Gao, Y., Chen, X., Hu, D., Li, M., Wang, C., & Shen, Y. (2019). Nitrogen isotopic composition of sediments from the eastern Tethys during Oceanic Anoxic Event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 515, 123–133. https://doi.org/10.1016/j.palaeo.2018.03.013
Zhang, X., Sigman, D. M., Morel, F. M. M., & Kraepiel, A. M. L. (2014). Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proceedings of the National Academy of Sciences of the United States of America, 111(13), 4782–4787. https://doi.org/10.1073/pnas.1402976111