Abstract :
[en] The transition to a more environmentally friendly energy matrix by reducing fossil fuel usage has become one of the most important goals to control climate change. Variable renewable energy sources (VRES) are a central low-carbon alternative. Nevertheless, their variability and low predictability can negatively affect the operation of power systems. On this issue, energy-system-modeling tools have played a fundamental role. When exploring the behavior of the power system against different levels of VRES penetration through them, it is possible to determine certain operational and planning strategies to balance the variations, reduce the operational uncertainty, and increase the supply reliability. In many developing countries, the lack of such proper tools accounting for these effects hinders the deployment potential of VRES. This paper presents a particular energy system model focused on the case of Bolivia. The model manages a database gathered with the relevant parameters of the Bolivian power system currently in operation and those in a portfolio scheduled until 2025. From this database, what-if scenarios are constructed allowing us to expose the Bolivian power system to a set of alternatives regarding VRES penetration and Hydro storage for that same year. The scope is to quantify the VRES integration potential and therefore the capacity of the country to leapfrog to a cleaner and more cost-effective energy system. To that aim, the unit-commitment and dispatch optimization problem are tackled through a Mixed Integer Linear Program (MILP) that solves the cost objective function within its constraints through the branch-and-cut method for each scenario. The results are evaluated and compared in terms of energy balancing, transmission grid capability, curtailment, thermal generation displacement, hydro storage contribution, and energy generation cost. In the results, it was found that the proposed system can reduce the average electricity cost down to 0.22 EUR/MWh and also reduce up to 2.22 × 106 t (96%) of the CO2 emissions by 2025 with very high penetration of VRES but at the expense of significant amount of curtailment. This is achieved by increasing the VRES installed capacity to 10,142 MW. As a consequence, up to 7.07 TWh (97%) of thermal generation is displaced with up to 8.84 TWh (75%) of load covered by VRES.
Scopus citations®
without self-citations
16