Wittemeier, N.; Catalan Institute of Nanoscience and Nanotechnology - ICN2 (CSIC, BIST), Campus UAB, Bellaterra, 08193, Spain
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Ordejón, P.; Catalan Institute of Nanoscience and Nanotechnology - ICN2 (CSIC, BIST), Campus UAB, Bellaterra, 08193, Spain
Zanolli, Zeila ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Title :
Interference effects in one-dimensional moiré crystals
Publication date :
2022
Journal title :
Carbon
ISSN :
0008-6223
eISSN :
1873-3891
Publisher :
Elsevier Ltd
Volume :
186
Pages :
416-422
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
Funders :
MINECO - Spanish Government. Ministry of Economy, Industry and Competitiveness Generalitat de Catalunya EU - European Union F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding number :
Severo Ochoa Centers of Excellence Program under Grant No. SEV-2017-0706; Spanish MICIU, AEI and EU FEDER (Grants No. PGC2018-096955-B-C43); Generalitat de Catalunya (Grant No. 2017SGR1506 and the CERCA Programme); European Union MaX Center of Excellence (EU-H2020 Grant No. 824143); Ramon y Cajal program RYC-2016-19344 (MINECO/AEI/FSE, UE); Belgian FNRS (PDR G.A. T.1077.15e1/7 and a sabbatical “OUT” grant at ICN2),; Marie Skłodowska-Curie grant agreement No. 754558
Bonnet, R., Lherbier, A., Barraud, C., Della Rocca, M.L., Lafarge, P., Charlier, J.-C., Charge transport through one-dimensional moiré crystals. Sci. Rep. 6:1 (2016), 1–7.
Zhao, S., Moon, P., Miyauchi, Y., Nishihara, T., Matsuda, K., Koshino, M., Kitaura, R., Observation of drastic electronic-structure change in a one-dimensional moiré superlattice. Phys. Rev. Lett., 124(10), 2020, 106101.
Kim, D.-H., Chang, K.J., Electron transport in telescoping carbon nanotubes. Phys. Rev. B, 66(15), 2002, 155402, 10.1103/PhysRevB.66.155402.
Grace, I., Bailey, S., Lambert, C., Electron transport in carbon nanotube shuttles and telescopes. Phys. Rev. B, 70, 2004, 153405, 10.1103/PhysRevB.70.153405.
Tamura, R., Sawai, Y., Haruyama, J., Suppression of the pseudoantisymmetry channel in the conductance of telescoped double-wall nanotubes. Phys. Rev. B, 72, 2005, 045413, 10.1103/PhysRevB.72.045413.
Uryu, S., Ando, T., Electronic intertube transfer in double-wall carbon nanotubes. Phys. Rev. B, 72, 2005, 245403, 10.1103/PhysRevB.72.245403.
Yan, Q., Zhou, G., Hao, S., Wu, J., Duana, W., Mechanism of nanoelectronic switch based on telescoping carbon nanotubes. Appl. Phys. Lett., 88, 2005, 173107, 10.1063/1.2198481.
Tunney, M.A., Cooper, N.R., Effects of disorder and momentum relaxation on the intertube transport of incommensurate carbon nanotube ropes and multiwall nanotubes. Phys. Rev. B, 74, 2006, 075406, 10.1103/PhysRevB.74.075406.
Rubio, A., Sanchez-Portal, D., Artacho, E., Ordejón, P., Soler, J.M., Electronic states in a finite carbon nanotube: a one-dimensional quantum box. Phys. Rev. Lett., 82, 1999, 3520, 10.1103/PhysRevLett.82.3520.
Rochefort, A., Salahub, D.R., Avouris, P., Effects of finite length on the electronic structure of carbon nanotubes. J. Phys. Chem. B 103:4 (1999), 641–646, 10.1021/jp983725m.
Nakar, D., Gordeev, G., Machado, L.D., Popovitz-Biro, R., Rechav, K., Oliveira, E.F., Kusch, P., Jorio, A., Galvão, D.S., Reich, S., Joselevich, E., Few-wall carbon nanotube coils. Nano Lett., 20, 2020, 953, 10.1021/acs.nanolett.9b03977.
Uryu, S., Electronic states and quantum transport in double-wall carbon nanotubes. Phys. Rev. B, 69, 2004, 075402, 10.1103/PhysRevB.69.075402.
Charlier, J.-C., Blase, X., Roche, S., Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79 (2007), 677–732, 10.1103/RevModPhys.79.677.
Dubois, S.M.-M., Zanolli, Z., Declerck, X., Charlier, J.-C., Electronic properties and quantum transport in graphene-based nanostructures. Eur. Phys. J. B 72:1 (2009), 1–24, 10.1140/epjb/e2009-00327-8.
Zanolli, Z., Charlier, J.-C., Spin transport in carbon nanotubes with magnetic vacancy-defects. Phys. Rev. B, 81, 2010, 165406, 10.1103/PhysRevB.81.165406.
Zanolli, Z., Charlier, J.-C., Single-molecule sensing using carbon nanotubes decorated with magnetic clusters. ACS Nano 6:12 (2012), 10786–10791.
Zanolli, Z., Leghrib, R., Felten, A., Pireaux, J.-J., Llobet, E., Charlier, J.-C., Gas sensing with au-decorated carbon nanotubes. ACS Nano 5:6 (2011), 4592–4599.
Trambly de Laissardière, G., Mayou, D., Magaud, L., Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10 (2010), 804–808, 10.1021/nl902948m pMID: 20121163.
Datta, S., Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. 1995, Cambridge University Press, 10.1017/CBO9780511805776.
Papior, N., Lorente, N., Frederiksen, T., García, A., Brandbyge, M., Improvements on non-equilibrium and transport green function techniques: the next-generation transiesta. Comput. Phys. Commun. 212 (2017), 8–24, 10.1016/j.cpc.2016.09.022.
Román-Pérez, G., Soler, J.M., Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett., 103(9), 2009, 096102, 10.1103/PhysRevLett.103.096102.
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-n materials simulation. J. Phys. Condens. Matter 14:11 (2002), 2745–2779, 10.1088/0953-8984/14/11/302.
García, A., Papior, N., Akhtar, A., Artacho, E., Blum, V., Bosoni, E., Brandimarte, P., Brandbyge, M., Cerdá, J.I., Corsetti, F., Cuadrado, R., Dikan, V., Ferrer, J., Gale, J., García-Fernández, P., García-Suárez, V.M., García, S., Huhs, G., Illera, S., Korytár, R., Koval, P., Lebedeva, I., Lin, L., López-Tarifa, P., Mayo, S.G., Mohr, S., Ordejón, P., Postnikon, A., Pouillon, Y., Pruneda, M., Robles, R., Sánchez-Portal, D., Soler, J.M., Ulla, R., zhe Yu, V.W., Junquera, J., Siesta: recent developments and applications. J. Chem. Phys., 152, 2020, 204108, 10.1063/5.0005077.
Perdew, J.P., Wang, Y., Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45 (1992), 13244–13249, 10.1103/PhysRevB.45.13244.
van Setten, M., Giantomassi, M., Bousquet, E., Verstraete, M., Hamann, D., Gonze, X., Rignanese, G.-M., The pseudodojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226 (2018), 39–54, 10.1016/j.cpc.2018.01.012.