Improvements of portable energy dispersive X-ray fluorescence instrument: Resolution with Silicon Drift Detector, measurements stability using pyroelectric sources, and adaptation for space use
[en] An energy dispersive X-ray fluorescence instrument has been developed to be used for space exploration. In particular, the electronic readout has been redesigned to withstand the radiation environment of space and improve the energy resolution down to 121.17 eV using an Silicon Drift Detector (SDD). Besides, the instrument uses pyroelectric sources as excitation sources. We include a renormalization to reduce measurement fluctuation from 25.2% to 3.7%. A peak search algorithm has been implemented based on calibration to improve accuracy and reduce possible aging drift effects.
Research Center/Unit :
CSL - Centre Spatial de Liège - ULiège STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Physics
Author, co-author :
Carapelle, Alain ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Lejeune, Gary ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Morelle, Mathieu; Mirion Technologies
Evrard, Olivier; Mirion Technologies
Leroux, Paul; Katholieke Universiteit Leuven - KUL > Department of Electrical Engineering > ADVISE
Prinzie, Jeffrey; Katholieke Universiteit Leuven - KUL > Department of Electrical Engineering > ADVISE
Cao, Ying; MAGICS
Van Bockel, Bjorn; MAGICS
Montfort, Francis ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Martin, Nicolas ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Language :
English
Title :
Improvements of portable energy dispersive X-ray fluorescence instrument: Resolution with Silicon Drift Detector, measurements stability using pyroelectric sources, and adaptation for space use
Publication date :
01 February 2022
Journal title :
X-Ray Spectrometry
ISSN :
0049-8246
eISSN :
1097-4539
Publisher :
John Wiley & Sons, Hoboken, United States - New Jersey
F.-P. Hocquet, H.-P. Garnir, A. Marchal, M. Clar, C. Oger, D. Strivay, X-Ray Spectrom. 2008, 37, 304.
A. Argyrakia, M. H. Ramseya, P. J. Potts, Analyst 1997, 122, 743.
R. Ravansari, S. C. Wilson, M. Tighe, Environ. Int. 2020, 134, 105250.
A. Carapelle, K. Fleury-Frenette, J.-P. Collette, H.-P. Garnir, P. Harlet, Rev. Sci. Instrum. 2007, 78, 123109.
L. Ge, F. Li, X-Ray Spectrom. 2020, 49, 458.
P. J. Potts, M. West, Portable X-ray Fluorescence Spectrometry, Capabilities for In Situ Analysis, RSC Publishing, Cambridge 2008.
R. Rieder, R. Gellert, J. Brückner, G. Klingelhöfer, G. Dreibus, A. Yen, S. W. Squyres, JGR Planets 2003, 108, E12.
A. Allwood, B. Clark, D. Flannery, J. Hurowitz, L. Wade, T. Elam, M. Foote, E. Knowless, presented at IEEE Aerospace Conf, 2015, 1–13
H. Ida, J. Kawai, X-Ray Spectrom. 2005, 34, 225.
J. Kawai, H. Ishii, H. Ida, X-Ray Spectrom. 2012, 41, 216.
H. Nagaoka, N. Hasebe, M. Naito, E. Shibamura, H. Kuno, M. Mizone, K. J. Kim, JSASS Aerospace Tech. Japan 2018, 16, 137.
H. Nagaoka, T. Okada, H. Kusano, N. Tanaka, M. Naito, N. Hasebe, Trans. JSASS Aerospace Tech. Japan 2021, 19, 193.
ESA ECSS-E-HB-11A.
T. Economou, Radiat. Phys. Chem. 2001, 61, 191.
N. Tsoulfanidis, S. Landsberger, Measurement and Detection of Radiation, 3rd ed., Boca Raton: CRC Press, 2011. https://doi.org/10.1201/9781439894651
A. Niculae, T. Barros, A. Bechteler, R. Lackner, K. Hermenau, K. Heizinger, T. Mönninghoff, H. Soltau, L. Strüder, Microsc. Microanal. 2019, 25, 516.
L. Bombelli, C. Fiorini, T. Frizzi, R. Nava, A. Greppi, A. Longoni, presented at IEEE Nucl. Sci. Symp. Med. Imaging Conf, 2010
R. P. Alvarez, P. Van Espen, J. R. E. Alvarez, X-Ray Spectrom. 2006, 35, 178.
D. H. N. Quy, P. N. Tuan, N. N. Dien, JASMI 2019, 9, 22.
N. Rezzak, J-J. Wang, D. Dsilva, N. Jat, IEEE Radiation Effects Data Workshop 2015.
P. Horowitz, W. Hill, The Art of Electronics, 3rd ed., New-York: Cambridge University Press, 2015.
G. F. Knoll, Radiation Detection and Measurement, 4th ed., John Wiley and Sons, New York 2010.
S. Ohkawa, M. Yoshizawa, K. Husimi, Nucl. Instrum. Methods 1976, 138, 85.
Q. Zhou, Z. Wang, A DC-servo baseline restorer and its implementation in biomedical instrumentation. ICMIT Mechatronics, MEMS, and Smart Materials. SPIE PROCEEDINGS 6040. Bellingham, Washington: SPIE; 2005
J. D. Brownridge, S. Raboy, J. Appl. Phys. 1999, 86(1), 640.
P. Lechner, C. Fiorini, R. Hartmann, J. Kemmer, N. Krause, P. Leutenegger, A. Longoni, H. Soltau, D. Stötter, R. Stötter, L. Strüder, U. Weber, Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 2001, 458, 281.
A. H. Johnston, B. G. Rax, D. Thorbourn, IEEE Trans. Nucl. Sci. 2008, 55, 1953.
V. Re, L. Gaioni, M. Manghisoni, L. Ratti, G. Traversi, IEEE Trans. Nucl. Sci. 2008, 55, 3272.
A. Carapelle, J.-M. Defise, D. Strivay, H.-P. Garnir, Comput. Phys. Commun. 2011, 182, 1304.