Aalbers M. Vles J. Klinkenberg S. Hoogland G. Majoie M. Rijkers K. (2011). Animal models of vagus nerve stimulation in epilepsy. Exp. Neurol. 230 167–175.
Agnew W. McCreery D. Yuen T. Bullara L. (1989). Histological and physiologic evaluation of electrically stimulated peripheral nerve: Considerations for the selection of parameters. Ann. Biomed. Eng. 17 39–60. 10.1007/BF02364272 2537589
Allen G. Barbrick B. Esser M. (1996). Trigeminal-parabrachial connections: possible pathway for nociception-induced cardiovascular reflex responses. Brain Res. 715 125–135.
Aston-Jones G. Bloom F. (1981). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 8 876–886. 10.1523/JNEUROSCI.01-08-00876.1981 7346592
Aston-Jones G. Cohen J. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28 403–450. 10.1146/annurev.neuro.28.061604.135709 16022602
Aston-Jones G. Ennis M. Pieribone V. Thompson Nickell W. Shipley M. (1986). The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234 734–737. 10.1126/science.3775363 3775363
Aston-Jones G. Shipley M. Chouvet G. Ennis M. van Bockstaele E. Pieribone V. et al. (1991). Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. Prog. Brain Res. 88 47–75.
Bagdy G. Kecskemei V. Riba P. Jakus R. (2007). Serotonin and epilepsy. J. Neurochem. 100 857–873.
Baraban J. Aghajanian G. (1980). Suppression of firing activity of 5-HT neurons in the dorsal raphe by alpha-adrenoreceptor antagonists. Neuropharmacology 19 355–363. 10.1016/0014-2999(92)90772-v
Bauer S. Baier H. Baumgartner C. Bohlmann K. Fauser S. Graf W. et al. (2016). Transcutaneous Vagus Nerve Stimulation (tVNS) for Treatment of Drug-Resistant Epilepsy: A Randomized, Double-Blind Clinical Trial (cMPsE02). Brain Stimulat. 2016 356–363. 10.1016/j.brs.2015.11.003 27033012
Beekwilder J. Beems T. (2010). Overview of the clinical applications of Vagus Nerve Stimulation. J. Clin. Neurophys. 27 130–138. 10.1097/wnp.0b013e3181d64d8a 20505378
Bekker E. Kenemans J. Hoeksma M. Talsma D. Verbaten M. (2004). The pure electrophysiology of stopping. Internat. J. Psychophys. 55 191–198.
Berridge C. Waterhouse B. (2003). The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Rev. 42 33–84. 10.1016/s0165-0173(03)00143-7
Betts M. Cardenas-Blanco A. Kanowski M. Jessen F. Düzel E. (2017). In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. NeuroImage 163 150–159. 10.1016/j.neuroimage.2017.09.042 28943414
Betts M. Cardenas-Blanco A. Kanowski M. Spottke A. Teipel S. Kilimann I. et al. (2019). Locus coeruleus MRI contrast is reduced in Alzheimer’s disease dementia and correlates with CSF Aβ levels. NeuroImaging 11 281–285. 10.1016/j.dadm.2019.02.001 30976648
Bonaz B. Sinniger V. Pellissier S. (2017). The vagus Nerve in the Neuro-immune Axis: implications in the Pathology of the Gastrointestinal Tract. Font. Immunol. 8:1452. 10.3389/fimmu.2017.01452 29163522
Brázdil M. Chadim P. Daniel P. Kuba R. I (2001). Effect of vagal nerve stimulation on auditory and visual event-related potentials. Eur. J. Neurol. 8 457–461.
Broncel A. Bocian R. Kulbat-Warycha K. Konopacki J. (2020). Vagal nerve stimulation as a promising tool in the improvement of cognitive disorders. Brain Res. Bull. 155 37–47. 10.1016/j.brainresbull.2019.11.011 31790720
Castel-Branco M. Alves G. Figueiredo I. Falcao A. Caramona M. (2009). The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs,”. Methods Find. Exp. Clin. Pharm. 31 101–106.
Castoro M. Yoo P. Hincapie J. Hamann J. Ruble S. Wolf P. et al. (2011). Excitation properties of the right cervical vagus nerve in adults dogs. Exp. Neurol. 227 62–68. 10.1016/j.expneurol.2010.09.011 20851118
Chachua T. Bilanishvili I. Khizanishvili N. Nanobashvili Z. (2010). Noradrenergic modulation of seizure activity. Georg. Med. News 183 34–43.
Chamberlain S. R. Müller U. Blackwell A. D. Clark L. Robbins T. W. Sahakian B. J. (2006). Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 311 861–863.
Chang Y.-C. Cracchiolo M. Ahmed U. Mughrabi I. Gabalski A. Daytz A. et al. (2020). Quantitative estimation of nerve fiber engagement by vagus nerve stimulation using physiological markers. Brain Stimul. 13 1617–1630. 10.1016/j.brs.2020.09.002 32956868
Chen X. Huddleston D. Langley J. Ahn S. Barnum C. Factor S. et al. (2014). Simultaneous imaging of locus coeruleus and substantia nigra with a quantitative neuromelanin MRI approach. Magn. Reson Imaging 32 1301–1306. 10.1016/j.mri.2014.07.003 25086330
Chmielewski W. Mückschel M. Ziemssen T. Beste C. (2016). The norepinephrine system affects specific neurophysiological subprocesses in the modulation of inhibitory control by working memory demands. Hum. Brain Mapp. 38 68–81. 10.1002/hbm.23344 27519546
Collins L. Boddington L. Steffan P. McCormick D. (2021). Vagus nerve stimulation induces widespread cortical and behavioral activation. Curr. Biol. 31 2088–2098. 10.1016/j.cub.2021.02.049 33740425
Cunningham J. Mifflin S. Gould G. Frazer A. (2008). Induction of c-Fos and DeltaFosB Immunoreactivity in Rat Brain by Vagal Nerve Stimulation. Neuropsychopharmacology 33 1884–1895. 10.1038/sj.npp.1301570 17957222
Curet O. de Montigny C. (1988). Electrophysiological characterization of adrenoreceptors in the rat dorsal hippocampus. I. Receptors mediating the effect of microionophoretically applied norepinephrine. Brain Res. 475 35–46. 10.1016/0006-8993(88)90196-5
Dahl M. Mather M. Düzel S. Bodammer N. Lindenberger U. Kühn S. et al. (2019). Rostral locus coeruleus integrity is associated with better memory performance in older adults. Nat. Hum. Behav. 3 1201–1214. 10.1038/s41562-019-0715-2 31501542
De Taeye L. Vonck K. van Bochove M. Boon P. Van Roost D. Mollet L. et al. (2014). The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy. Neurotherapeutics 11 612–622. 10.1007/s13311-014-0272-3 24711167
DeGiorgio C. Shewmon D. Whitehurst T. (2003). Trigeminal nerve stimulation for epilepsy. Neurology 61 421–422.
Desbeaumes-Jodoin V. Lespérance P. Nguyen D. K. Fournier-Gosselin M.-P. Richer F. (2015). Effects of vagus nerve stimulation on pupillary function. Internat. J. Psychophys. 98 455–459. 10.1016/j.ijpsycho.2015.10.001 26437126
Ding J. Liu P. Rebernig H. Suller-Marti A. Parrent A. Burneo J. et al. (2021). Vagus nerve stimulation does not alter brainstem nuclei morphology in patients with refractory epilepsy. Epilepsy Behav. 2021:118.
Dorr A. E. Debonnel G. (2006). Effect of Vagus Nerve Stimulation on Serotonergic and Noradrenergic Transmission. J. Pharm. Exp. Ther. 318 890–898. 10.1124/jpet.106.104166 16690723
Drake M. Jr. Pakalnis A. Bogner J. Andrews J. (1990). Outpatient sleep recording during antiepileptic drug monotherapy. Clin. Electroencephalogr. 3 170–173. 10.1177/155005949002100314 2114239
Ehlert U. Erni K. Hebisch G. Nater U. (2006). Salivary alpha-amylase levels after yohimbine challenge in healthy men. J. Clin. Endocrinol. Metab. 91 5130–5133. 10.1210/jc.2006-0461 16968802
Elliott R. Morsi A. Tanweer O. Grobelny B. Geller E. Carlson C. D. O. et al. (2011). Efficacy of vagus nerve stimulation over time: Review of 65 consecutive patients with treatment-resistant epilepsy treated with VNS > 10 years. Epilep. Behav. 20 478–484. 10.1016/j.yebeh.2010.12.042 21296622
Englot D. Lee A. Tsai C. Halabi C. Barbaro N. Garcia A. K. I. P. et al. (2013). Seizure types and frequency in patients who “fail” temporal lobectomy for intractable epilepsy. Neurosrugery 5 838–844. 10.1227/NEU.0000000000000120 23892416
Englot D. Rolston J. Wright C. W. Hassnain K. H. Chang E. F. Englot D. J. et al. (2016). Rates and Predictors of Seizure Freedom With Vagus Nerve Stimulation for Intractable Epilepsy. Neurosurgery 3 345–353.
Ennis M. Aston-Jones G. (1988). Activation of the locus coeruleus from nucleus paragiganticellularis: a new excitatory amino acid pathway in brain. J. Neurosci. 8 3644–3657. 10.1523/jneurosci.08-10-03644.1988 3193175
Ennis M. Aston-Jones G. (1989). GABA-Mediated Inhibition of Locus Coeruleus from the Dorsomedial Rostra1 Medulla. J. Neurosci. 9 2973–2981. 10.1523/JNEUROSCI.09-08-02973.1989 2769374
Fang X. Liu H. Wang Z. Yang Z. Cheng T. Hu C. et al. (2021). Preoperative Heart Rate Variability During Sleep Predicts Vagus Nerve Stimulation Outcome Better in Patients With Drug-Resistant Epilepsy. Front. Neurol. 12:691328. 10.3389/fneur.2021.691328 34305797
Fanselow E. Reid A. Nicolelis M. (2000). Reduction of pentylenetetrazole-induced seizure activity in awake rats by seizure-triggered trigeminal nerve stimulation. J. Neurosci. 20 8160–8168. 10.1523/JNEUROSCI.20-21-08160.2000 11050139
Fedorow H. Halliday G. R. C. Gerlach M. Riederer P. Double K. (2006). Evidence for specific phases in the development of human neuromelanin. Neurobiol. Aging 27 506–512. 10.1016/j.neurobiolaging.2005.02.015 15916835
Follesa P. Biggio F. Gorini G. Caria S. Talani G. Dazzi L. et al. (2007). Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 1179 28–34. 10.1016/j.brainres.2007.08.045 17920573
Fornai F. Ruffoli R. Giorgi F. Paparelli A. (2011). The role of the locus coeruleus in the antiepileptic activity induced by vagus nerve stimulation. Eur. J. Neurosci. 33 2169–2178. 10.1111/j.1460-9568.2011.07707.x 21535457
Frangos E. Ellrich J. Komisaruk B. (2015). Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans. Brain Stimul. 8 624–636. 10.1016/j.brs.2014.11.018 25573069
Giorgi F. Ferrucci M. Lazzeri G. Pizzanelli C. Lenzi P. Alessandri M. et al. (2003). A damage to locus coeruleus neurons converts sporadic seizures into self-sustaining limbic status epilepticus. Eur. J. Neurosci. 12 2593–2601. 10.1046/j.1460-9568.2003.02692.x 12823466
Groves D. Brown V. (2005). Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 3 493–500.
Groves D. A. Bowman E. M. Brown J. V. (2005). Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neurosci. Lett. 379 174–179. 10.1016/j.neulet.2004.12.055 15843058
Guinea-Izquierdo A. Gimenez M. Martinez-Zalacain I. del Cerro I. Canal-Noguer P. Blasco G. et al. (2021). Lower Locus Coeruleus MRI intensity in patients with late-life major depression. PeerJ. 2021:eerJ. 10.7717/peerj.10828 33628639
Hallböök T. Lundgren J. Kohler S. Blennow G. Striomblad L. Rosén I. (2005). Beneficial effects on sleep of vagus nerve stimulation in children with therapy resistant epilepsy. Eur. J. Paediatr. Neurol. 9 399–407. 10.1016/j.ejpn.2005.08.004 16257548
Hammond E. Uthman B. Reid S. Wilder B. (1992). Electrophysiologic studies of cervical vagus nerve stimulation in humans: II. Evoked potentials. Epilepsia 33 1021–1028. 10.1111/j.1528-1157.1992.tb01753.x 1464258
Hays S. Rennaker R. Kilgard M. (2013). Targeting plasticity with Vagus Nerve Stimulation to treat neurological disease. Prog. Brain Res. 207 275–299. 10.1016/b978-0-444-63327-9.00010-2 24309259
Hill S. Taylor M. Harmer C. Cowen P. J. (2003). Acute reboxetine administration increases plasma and salivary cortisol. J. Psychopharmacol. 17 273–275. 10.1177/02698811030173008 14513918
Hödl S. Carrette S. Meurs A. Carrette E. M. A. Gadeyne S. Goossens L. et al. (2020). Neurophysiological investigations of drug resistant epilepsy patients treated with vagus nerve stimulation to differentiate responders from non-responders. Eur. J. Neurol. 27 1178–1189.
Hulsey D. R. Riley J. R. Loerwald K. W. Rennaker R. L. II Kilgard M. P. Hays S. A. (2017). Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp. Neurolo. 289 21–30. 10.1016/j.expneurol.2016.12.005 27988257
Jiao J. Jensen W. Harreby K. (2016). The Effect of Spinal Cord Stimulation on Epileptic Seizures. Neuromodulation 19 154–160. 10.1111/ner.12362 26516727
Joshi S. Li Y. Kalwani R. Gold J. (2016). Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron 89 221–234. 10.1016/j.neuron.2015.11.028 26711118
Keren N. Lozar C. Harris K. (2009). In vivo mapping of the human locus coeruleus,”. Neuroimage 47 1261–1267.
Keren N. Taheri S. Vazey E. Morgan P. Granholm A. Aston-Jones G. et al. (2015). Histologic validation of locus coeruleus MRI contrast in 2 post-mortem tissue. NeuroImage 113 235–245. 10.1016/j.neuroimage.2015.03.020 25791783
Keute M. Demirezen M. Graf A. Mueller N. G. Zaehle T. (2019). No modulation of pupil size and event-related pupil response by transcutaneous auricular vagus nerve stimulation (taVnS). Sci. Rep. 2019:9. 10.1038/s41598-019-47961-4 31391505
Kim M. Lee H. Lee B. Waterhouse B. (2004). Reciprocal connections between subdivisions of the dorsal raphe and the nuclear core of the locus coeruleus in the rat. Brain Res. 1026 56–67. 10.1016/j.brainres.2004.08.022 15476697
Kogeorgos J. Fonagy P. Scott D. (1982). Psychiatric symptom patterns of chronic epileptics attending a neurological clinic: a controlled investigation. Br. J. Psychiatry 140 236–243. 10.1192/bjp.140.3.236 6807385
Koo B. Ham S. Sood S. Tarver B. (2001). Human Vagus Nerve Electrophysiology: A guide to Vagus Nerve Stimulation Parameters. Journal of Clinical Neurophysiology 18 429–433. 10.1097/00004691-200109000-00007 11709648
Krahl S. Martin F. Handforth A. (2004). Vagus nerve stimulation inhibits harmaline-induced tremor. Brain Res. 1 135–138. 10.1016/j.brainres.2004.03.021 15140653
Krahl S. Senanayake S. Handforth A. (2001). Destruction of peripheral C-fibers does not alter subsequent vagus nerve stimulation-induced seizure suppression in rats. Epilepsia 5 586–589. 10.1046/j.1528-1157.2001.09700.x 11380564
Krahl S. E. Clark K. B. Smith D. C. Browning R. A. (1998). Locus Coeruleus Lesions Suppress the Seizure-Attenuating Effects of Vagus Nerve Stimulation. Epilepsia 1998 709–714. 10.1111/j.1528-1157.1998.tb01155.x 9670898
Kulkarni V. A. Jha S. Vaidya V. A. (2008). Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. Eur. J. Neurosci. 16 2008–2012.
Lansbergen M. Böcker K. Bekker E. Kenemans J. (2007). Neural correlates of stopping and self-reported impulsivity. Clin. Neurophysiol. 118 2089–2103. 10.1016/j.clinph.2007.06.011 17652017
Laxer K. Sourkes T. Fang T. Young T. Gauthier S. Missala G. (1979). Monoamine metabolites in the CSF of epileptic patients. Neurology 8 1157–1161.
Liu K. Acosta-Cabronero J. Cardenas-Blanco A. Loane C. Berry A. Betts M. et al. (2019). In vivo visualization of age-related differences in the locus coeruleus. Neurbiol. Aging 74 101–111.
LivaNova P. L. C. (2019). MRI with the VNS Therapy System. Available: https://vnstherapy.com/healthcare-professionals/resources/physician-manuals. [Accessed 31 04 2021].
Loughlin S. Foote S. Fallon J. (1982). Locus coeruleus projections to cortex: Topography, morphology and collateralization. Brain Res. Bull. 9 287–294. 10.1016/0361-9230(82)90142-3
Luo P. Wang B. Peng Z. Li J. (1991). Morphological characteristics and terminating patterns of masseteric neurons of the mesencephalic trigeminal nucleus in the rat: an intracellular horseradish peroxidase labeling study. J. Comparat. Neurol. 303 286–299. 10.1002/cne.903030210 2013641
Luppi P. Aston-Jones G. Akaoka H. Chouvet G. Jouvet M. (1995). Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and Phaseolus vulgaris leucoagglutinin. Neuroscience 65 119–160. 10.1016/0306-4522(94)00481-j
Malberg J. Eisch A. Nestler E. Duman R. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20 9104–9110. 10.1523/jneurosci.20-24-09104.2000 11124987
Malik M. Bigger J. Camm A. Kleiger R. Malliani A. Moss A. et al. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Eur. Heart J. 17 354–381. 10.1093/oxfordjournals.eurheartj.a014868
Manta S. Dong J. Debonnel G. Blier P. (2009). Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J. Psychiatry Neurosci. 34 272–280.
Manta S. El Mansari M. Debonnel G. Blier P. (2013). Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Internat. J. Neurosychopharm. 16 459–470.
Matsuura K. Maeda M. Yata K. Ichiba Y. Yamaguchi T. Kanamaru K. et al. (2013). Neuromelanin magnetic resonance imaging in Parkinson’s disease and multiple system atrophy. Eur. Neurol. 70 70–77. 10.1159/000350291 23796701
McAllen R. Shafton A. Bratton B. Trevaks D. Furness J. (2018). Calibration of thresholds for functional engagement of vagal A, B and C fiber groups in vivo. Bioelectr. Med. 1 21–27. 10.2217/bem-2017-0001 29480903
McCorry L. (2007). Physiology of the Autonomic Nervous System. Am. J. Pharmaceut. Educat. 2007 71–78.
Mendez M. Cummings J. Benson F. (1986). Depression in epilepsy. Significance and phenomenology. Arch. Neurol. 8 766–770. 10.1001/archneur.1986.00520080014012 3729756
Miyoshi F. Ogama T. Kitao S. Kitayama M. Shinohara Y. Takasugi M. et al. (2013). Evaluation of Parkinson Disease and Alzheimer Disease with the Use of Neuromelanin MR Imaging and 123I-Metaiodobenzylguanidine Scintigraphy. Am. J. Neuroradiol. 34 2112–2118. 10.3174/ajnr.A3567 23744697
Mridha Z. Willem J. De Gee Y. Alkashgari R. Williams J. Suminski A. et al. (2021). Graded recruitment of pupil-linked neuromodulation by parametric stimulation of the vagus nerve. Nat. Comm. 2021:12. 10.1038/s41467-021-21730-2 33750784
Murphy P. R. O’Connell R. G. O’Sullivan M. I (2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum. Brain Mapp. 35 4140–4154. 10.1002/hbm.22466 24510607
Naritoku D. Terry W. Helfert R. (1995). Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve. Epilepsy Res. 22 53–62. 10.1016/0920-1211(95)00035-9
Nieuwenhuis S. Aston-Jones G. Cohen J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol. Bull 131 510–532. 10.1037/0033-2909.131.4.510 16060800
Ohtsuka C. Sasaki M. Konno K. Koide M. Kato K. Takahashi J. et al. (2013). Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson’s disease using neuromelanin-sensitive MR imaging. Neurosci. Lett. 541 93–98. 10.1016/j.neulet.2013.02.012 23428505
Placidi F. Diomedi M. Scalise A. Marciani M. Romigi A. Gigli G. (2000). Effect of anticonvulsants on nocturnal sleep in epilepsy. Neurology 54(Suppl. 1), 25–32.
Priovoulos N. Jacobs H. Ivanov D. Uludag K. Verhey F. Poser B. (2018). High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T. NeuroImage 168 427–436. 10.1016/j.neuroimage.2017.07.045 28743460
Raedt R. Clickers R. Mollet L. Vonck K. El Tahry R. Wyckhuys T. et al. (2011). Increased hippocampal noradrenaline is a biomarker for efficacy of nagus nerve stimulation in a limbic seizure model. J. Neurochem. 117 461–469. 10.1111/j.1471-4159.2011.07214.x 21323924
Revesz D. Tjernstrom M. Ben-Menachem E. Thorlin T. (2008). Effects of vagus nerve stimulation on rat hippocampal progenitor proliferation. Exp. Neurol. 214 259–265.
Rizzo P. Beelke M. De Carli F. Canovaro P. Nobili L. Robert A. et al. (2003). Chronic Vagus Nerve Stimulation Improves Alertness and Reduces Rapid Eye Movement Sleep in Patients Affected by Refractory Epilepsy. Sleep 26 607–611. 10.1093/sleep/26.5.607 12938816
Robinson E. S. Eagle D. M. Mar A. C. Bari A. Banerjee G. Jiang X. et al. (2008). Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33 1028–1037. 10.1038/sj.npp.1301487 17637611
Roosevelt R. W. Smith D. C. Clough R. W. Jensen R. A. Browning R. A. (2006). Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res. 2006 124–132. 10.1016/j.brainres.2006.08.048 16962076
Ruffoli R. Giorgi F. Pizzanelli C. Murri L. Paparelli A. Fornai F. (2011). The chemical neuroanatomy of vagus nerve stimulation. J. Chem. Neuroanat. 42 288–296.
Sasaki M. Shibata E. Tohyama K. Takahashi J. Otsuka K. Tsuchiya K. et al. (2006). Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. NeuroReport 11 1215–1218.
Scharfman H. (2015). Epilepsy. Neurobiol. Brain Dis. 2015 236–261.
Schevernels H. van Bochove M. E. De Taeye L. Bombeke K. Vonck K. Van Roost D. et al. (2016). The effect of vagus nerve stimulation on response inhibition. Epilepsy Behav. 64 171–179.
Schrader L. I. Cook I. A. Miller P. R. Maremont E. R. DeGiorgio C. M. et al. (2011). Trigeminal nerve stimulation in major depressive disorder: first proof. Epilep. Behav. 22 475–478. 10.1016/j.yebeh.2011.06.026 21820361
Shaffer F. Ginsberg J. (2017). An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017:5. 10.3389/fpubh.2017.00258 29034226
Sharon O. Fahoum F. Nir Y. (2020). Transcutaneous vagus nerve stimulation in humans induces pupil dilation and attenuates alpha oscillations. J. Neurosci. 41 320–330. 10.1523/JNEUROSCI.1361-20.2020 33214317
Shen H. Fuchino Y. Miyamoto D. Nomura H. Matsuki N. (2012). Vagus nerve stimulation enhances perforant path-CA3 synaptic transmission via the activation of b-adrenergic receptors and the locus coeruleus. Internat. J. Neuropsychopharm. 15 523–530. 10.1017/S1461145711000708 21733240
Siegel J. (2011). REM sleep: a biological and psychological paradox. Sleep Med. Rev. 15 139–142.
Smets H. Stumpp L. Julémont N. Cury J. Debelle A. Innocenti B. et al. (2021). Analysing vagus nerve spontaneous activity using finite element modelling. J. Neural Eng. 18:5. 10.1088/1741-2552/abe68f 33588393
Song S. Ansah O. Meyerson B. Pertovaara A. Linderoth B. (2013). Exploration of supraspinal mechanisms in effects of spinal cord stimulation: role of the locus coeruleus. Neuroscience 253 426–434. 10.1016/j.neuroscience.2013.09.006 24036376
Spencer S. Huh L. (2008). Outcomes of epilepsy surgery in adults and children. Lancet Neurol. 6 525–537.
Stakenborg N. Gomez-Pinilla P. Verlinden T. Wolthuis A. D’Horre A. Farre R. et al. (2020). Comparison between the cervical and abdominal vagus nerves in mice, pigs, and humans. Neurogastroenterol. Motil. 32:9. 10.1111/nmo.13889 32476229
Takahashi J. Shibata T. Sasaki M. Kudo M. Yanezawa H. Obara S. et al. (2015). Detection of changes in the locus coeruleus in patients with mild cognitive impairment and Alzheimer’s disease: high-resolution fast spin-echo T1-weighted imaging. Geriatr. Gerontol. Int. 15 334–340. 10.1111/ggi.12280 24661561
Terui N. Koizumi K. (1984). Response of cardiac vagus and symathetic nerves to excitation of somatic and visceral nerves. J. Auton. Nervous System 10 73–91.
van Bochove M. E. De Taeye L. Raedt R. Vonck K. Meurs A. Boon P. et al. (2018). Reduced distractor interference during vagus nerve stimulation. Internat. J. Psychophys. 128 93–99. 10.1016/j.ijpsycho.2018.03.015 29574234
Vuckovic A. Tosato M. Struijk J. (2008). A comparative study of three techniques for diameter selective fiber activation in the vagal nerve: anodal block, depolarizing prepulses and slowly rising pulses. J. Neural. Eng. 5 275–286. 10.1088/1741-2560/5/3/002
Warren C. Tona K. Ouwerkerk L. van Paridon J. Poletiek F. van Steenbergen H. et al. (2019). The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potenti,”. Brain Stimul. 12 635–642. 10.1016/j.brs.2018.12.224 30591360
Warren C. M. van den Brink R. L. Nieuwenhuis S. Bosch J. (2017). Norepinephrine transporter blocker atomoxetine increases salivary alpha amylase. Psychoneuroendocrinology 78 233–236. 10.1016/j.psyneuen.2017.01.029 28232237
Watanabe Y. Tanaka H. Tsukabe A. Kunitomi Y. Nishizawa M. Hashimoto R. et al. (2014). Neuromelanin magnetic resonance imaging reveals increased dopaminergic neuron activity in the substantia nigra of patients with schizophrenia. PLoS One 9:e104619. 10.1371/journal.pone.0104619 25111500
Waterhouse B. Woodward D. (1980). Interaction of norepinephrine with cerebrocortical activity evoked by stimulation of somatosensory afferent pathways in the rat. Exp. Neurol. 67 11–34.
Wessel J. Aron A. (2015). It’s not too late: the onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm. Psychophysiol. 52 472–480. 10.1111/psyp.12374 25348645
Woodbury D. Woodbury J. (1990). Effects of Vagal Stimulation on Experimentally Induced Seizures in Rats. Epilepsia 31 S7–S19.
Wostyn S. Staljanssens W. De Taeye L. Strobbe G. Gadeyne S. Van Roost D. et al. (2017). EEG Derived Brain Activity Reflects Treatment Response from Vagus Nerve Stimulation in Patients with Epilepsy. Internat. J. Neural Systems 2017:27. 10.1142/S0129065716500489 27712133
Yang J. Elphick M. Sharpley A. Cowen P. (1989). Effects of carbamazepine on sleep in healthy volunteers. Biolog. Psychiatry 26 324–328. 10.1016/0006-3223(89)90046-2
Yap J. Keatch C. Lambert E. Woods W. Stoddart P. Kameneva T. (2020). Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. Front. Neurosci. 2020:14. 10.3389/fnins.2020.00284 32410932
Yoo P. Lubock N. H. J. Ruble S. H. J. Grill W. (2013). High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog. J. Neural. Eng. 10:2. 10.1088/1741-2560/10/2/026003