[en] Susceptibility to motion sickness varies greatly across individuals. However, the neural mechanisms underlying this susceptibility remain largely unclear. To address this gap, the current study aimed to identify the neural correlates of motion sickness susceptibility using multimodal MRI. First, we compared resting-state functional connectivity between healthy individuals who were highly susceptible to motion sickness (N = 36) and age/sex-matched controls who showed low susceptibility (N = 36). Seed-based analysis revealed between-group differences in functional connectivity of core vestibular regions in the left posterior Sylvian fissure. A data-driven approach using intrinsic connectivity contrast found greater network centrality of the left intraparietal sulcus in high- rather than in low-susceptible individuals. Moreover, exploratory structural connectivity analysis uncovered an association between motion sickness susceptibility and white matter integrity in the left inferior fronto-occipital fasciculus. Taken together, our data indicate left parietal involvement in motion sickness susceptibility.
Disciplines :
Neurosciences & behavior
Author, co-author :
Sakai, Hiroyuki
Harada, Takumi
Larroque, Stephen ; Université de Liège - ULiège > GIGA Consciousness - Coma Science Group
Demertzi, Athina ; Université de Liège - ULiège > GIGA Consciousness - Physiology of Cognition
Sugawara, Tomoko
Ito, Taeko
Wada, Yoshiro
Fukunaga, Masaki
Sadato, Norihiro
Laureys, Steven ; Université de Liège - ULiège > GIGA Consciousness - Coma Science Group
Language :
English
Title :
Left parietal involvement in motion sickness susceptibility revealed by multimodal magnetic resonance imaging.
Publication date :
2022
Journal title :
Human Brain Mapping
ISSN :
1065-9471
eISSN :
1097-0193
Publisher :
John Wiley & Sons, Hoboken, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Arshad, Q., Cerchiai, N., Goga, U., Nigmatullina, Y., Roberts, R. E., Casani, A. P., … Bronstein, A. M. (2015). Electrocortical therapy for motion sickness. Neurology, 85, 1257–1259.
Arshad, Q., Nigmatullina, Y., Nigmatullin, R., Asavarut, P., Goga, U., Khan, S., … Malhotra, P. A. (2016). Bidirectional modulation of numerical magnitude. Cerebral Cortex, 26, 2311–2324.
Arshad, Q., Nigmatullina, Y., Roberts, R. E., Bhrugubanda, V., Asavarut, P., & Bronstein, A. M. (2014). Left cathodal trans-cranial direct current stimulation of the parietal cortex leads to an asymmetrical modulation of the vestibular-ocular reflex. Brain Stimulation, 7, 85–91.
Arshad, Q., Nigmatullina, Y., Roberts, R. E., Goga, U., Pikovsky, M., Khan, S., … Bronstein, A. M. (2016). Perceived state of self during motion can differentially modulate numerical magnitude allocation. European Journal of Neuroscience, 44, 2369–2374.
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38, 95–113.
Ashkenazi, S., Henik, A., Ifergane, G., & Shelef, I. (2008). Basic numerical processing in left intraparietal sulcus (IPS) acalculia. Cortex, 44, 439–448.
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37, 90–101.
Bodegård, A., Geyer, S., Grefkes, C., Zilles, K., & Roland, P. E. (2001). Hierarchical processing of tactile shape in the human brain. Neuron, 31, 317–328.
Brandt, T., Bartenstein, P., Janek, A., & Dieterich, M. (1998). Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain, 121, 1749–1758.
Brandt, T., & Dieterich, M. (1999). The vestibular cortex. Its locations, functions, and disorders. Annals of the New York Academy of Sciences, 871, 293–312.
Cardin, V., & Smith, A. T. (2010). Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cerebral Cortex, 20, 1964–1973.
Deutschländer, A., Bense, S., Stephan, T., Schwaiger, M., Brandt, T., & Dieterich, M. (2002). Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Human Brain Mapping, 16, 92–103.
Diels, C., & Bos, J. E. (2016). Self-driving carsickness. Applied Ergonomics, 53(Pt B), 374–382.
Dieterich, M., Bense, S., Lutz, S., Drzezga, A., Stephan, T., Bartenstein, P., & Brandt, T. (2003). Dominance for vestibular cortical function in the non-dominant hemisphere. Cerebral Cortex, 13, 994–1007.
Dieterich, M., & Brandt, T. (2015). The bilateral central vestibular system: Its pathways, functions, and disorders. Annals of the New York Academy of Sciences, 1343, 10–26.
Duffau, H. (2008). The anatomo-functional connectivity of language revisited. New insights provided by electrostimulation and tractography. Neuropsychologia, 46, 927–934.
Duffau, H., Gatignol, P., Mandonnet, E., Peruzzi, P., Tzourio-Mazoyer, N., & Capelle, L. (2005). New insights into the anatomo functional connectivity of the semantic system: A study using cortico-subcortical electrostimulations. Brain, 128, 797–810.
Ferrè, E. R., Day, B. L., Bottini, G., & Haggard, P. (2013). How the vestibular system interacts with somatosensory perception: A sham-controlled study with galvanic vestibular stimulation. Neuroscience Letters, 550, 35–40.
Foster, N. E. V., & Zatorre, R. J. (2010). A role for the intraparietal sulcus in transforming musical pitch information. Cerebral Cortex, 20, 1350–1359.
Frank, S. M., Baumann, O., Mattingley, J. B., & Greenlee, M. W. (2014). Vestibular and visual responses in human posterior insular cortex. Journal of Neurophysiology, 112, 2481–2491.
Frank, S. M., Wirth, A. M., & Greenlee, M. W. (2016). Visual-vestibular processing in the human Sylvian fissure. Journal of Neurophysiology, 116, 263–271.
Friedmann, G. (1970). The judgement of the visual vertical and horizontal with peripheral and central vestibular lesions. Brain, 93, 313–328.
Fukushima, J., Akao, T., Kurkin, S., Kaneko, C. R. S., & Fukushima, K. (2006). The vestibular-related frontal cortex and its role in smooth-pursuit eye movements and vestibular-pursuit interactions. Journal of Vestibular Research, 16, 1–22.
Gillebert, C. R., Mantini, D., Thijs, V., Sunaert, S., Dupont, P., & Vandenberghe, R. (2011). Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. Brain, 134, 1694–1709.
Golding, J. F. (1998). Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Research Bulletin, 47, 507–516.
Golding, J. F. (2006). Predicting individual differences in motion sickness susceptibility by questionnaire. Personality and Individual Differences, 41, 237–248.
Griswold, M. A., Jakob, P. M., Heidemann, R. M., Nittka, M., Jellus, V., Wang, J., … Haase, A. (2002). Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, 47, 1202–1210.
Harada, T., Sugawara, T., Ito, T., Wada, Y., Fukunaga, M., Sadato, N., … Sakai, H. (2021). Vestibular morphological asymmetry associated with motion sickness susceptibility. Frontiers in Neuroscience, 15, 763040. https://doi.org/10.3389/fnins.2021.763040
Indovina, I., Bosco, G., Riccelli, R., Maffei, V., Lacquaniti, F., Passamonti, L., & Toschi, N. (2020). Structural connectome and connectivity lateralization of the multimodal vestibular cortical network. NeuroImage, 222, 117247.
Lackner, J. R., Graybiel, A., Johnson, W. H., & Money, K. E. (1987). Asymmetric otolith function and increased susceptibility to motion sickness during exposure to variations in gravitoinertial acceleration level. Aviation, Space, and Environmental Medicine, 58, 652–657.
Lawther, A., & Griffin, M. J. (1988). A survey of the occurrence of motion sickness amongst passengers at sea. Aviation, Space, and Environmental Medicine, 59, 399–406.
Lopez, C., Blanke, O., & Mast, F. W. (2012). The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience, 212, 159–179.
MacDougall, H. G., Weber, K. P., McGarvie, L. A., Halmagyi, G. M., & Curthoys, I. S. (2009). The video head impulse test: Diagnostic accuracy in peripheral vestibulopathy. Neurology, 73, 1134–1141.
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97, 4398–4403.
Markham, C. H., & Diamond, S. G. (1993). A predictive test for space motion sickness. Journal of Vestibular Research, 3, 289–295.
Martino, J., Brogna, C., Robles, S. G., Vergani, F., & Duffau, H. (2010). Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex, 46, 691–699.
Martuzzi, R., Ramani, R., Qiu, M., Shen, X., Papademetris, X., & Constable, R. T. (2011). A whole-brain voxel based measure of intrinsic connectivity contrast reveals local changes in tissue connectivity with anesthetic without a priori assumptions on thresholds or regions of interest. NeuroImage, 58, 1044–1050.
Megías, A., Petrova, D., Navas, J. F., Cándido, A., Maldonado, A., & Catena, A. (2018). Neuroanatomical variations as a function of experience in a complex daily task: A VBM and DTI study on driving experience. Brain Imaging and Behavior, 12, 653–662.
Miyamoto, T., Fukushima, K., Takada, T., de Waele, C., & Vidal, P. P. (2007). Saccular stimulation of the human cortex: A functional magnetic resonance imaging study. Neuroscience Letters, 423, 68–72.
Moser, I., Vibert, D., Caversaccio, M. D., & Mast, F. W. (2017). Acute peripheral vestibular deficit increases redundancy in random number generation. Experimental Brain Research, 235, 627–637.
Mugler, J. P., & Brookeman, J. R. (1990). Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magnetic Resonance in Medicine, 15, 152–157.
Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? NeuroImage, 44, 893–905.
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.
Paillard, A. C., Quarck, G., Paolino, F., Denise, P., Paolino, M., Golding, J. F., & Ghulyan-Bedikian, V. (2013). Motion sickness susceptibility in healthy subjects and vestibular patients: Effects of gender, age and trait-anxiety. Journal of Vestibular Research, 23, 203–209.
Paus, T. (1996). Location and function of the human frontal eye-field: A selective review. Neuropsychologia, 34, 475–483.
Regenbogen, C., Axelsson, J., Lasselin, J., Porada, D. K., Sundelin, T., Peter, M. G., … Olsson, M. J. (2017). Behavioral and neural correlates tomultisensory detection of sick humans. Proceedings of the National Academy of Sciences of the United States of America, 114, 6400–6405.
Sakai, H., Ando, T., Sadato, N., & Uchiyama, Y. (2017). Greater cerebellar gray matter volume in car drivers: An exploratory voxel-based morphometry study. Scientific Reports, 7, 46526.
Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., … Behrens, T. E. J. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31, 1487–1505.
Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44, 83–98.
Sugawara, T., Wada, Y., Ito, T., & Sakai, H. (2021). Bilateral asymmetry in ocular counter-rolling reflex is associated with individual motion sickness susceptibility. Frontiers in Neurology, 12, 759764. https://doi.org/10.3389/fneur.2021.759764
Suzuki, M., Kitano, H., Ito, R., Kitanishi, T., Yazawa, Y., Ogawa, T., … Kitajima, K. (2001). Cortical and subcortical vestibular response to caloric stimulation detected by functional magnetic resonance imaging. Cognitive Brain Research, 12, 441–449.
Swisher, J. D., Halko, M. A., Merabet, L. B., McMains, S. A., & Somers, D. C. (2007). Visual topography of human intraparietal sulcus. The Journal of Neuroscience, 27, 5326–5337.
Tribukait, A. (2006). Subjective visual horizontal in the upright posture and asymmetry in roll-tilt perception: Independent measures of vestibular function. Journal of Vestibular Research, 16, 35–43.
Turner, M., & Griffin, M. J. (1999). Motion sickness in public road transport: Passenger behavior and susceptibility. Ergonomics, 42, 444–461.
Wang, L., Liu, Q., Shen, H., Li, H., & Hu, D. (2015). Large-scale functional brain network changes in taxi drivers: Evidence from resting-state fMRI. Human Brain Mapping, 36, 862–871.
Wenzel, R., Bartenstein, P., Dieterich, M., Danek, A., Weindl, A., Minoshima, S., … Brandt, T. (1996). Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study. Brain, 119, 101–110.
Yip, C. W., Glaser, M., Frenzel, C., Bayer, O., & Strupp, M. (2016). Comparison of the bedside head-impulse test with the video head-impulse test in a clinical practice setting: A prospective study of 500 outpatients. Frontiers in Neurology, 7, 58.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.