Abstract :
[en] Background
The increasing demand for local food production is fueling high interest in the development of controlled environment agriculture. In particular, LED technology brings energy-saving advantages together with the possibility to manipulate plant phenotypes through light quality control. However, optimizing light quality is required for each cultivated plant and specific purpose.
Findings
In this paper, it is shown that the combination of LED gradient setups with imaging-based non-destructive plant phenotyping constitutes an interesting new screening tool with the potential to improve speed, logistics, and information output. To validate this concept, an experiment was performed to evaluate the effects of a complete range of Red:Blue ratios on seven plant species: Arabidopsis thaliana, Brachypodium distachyon, Euphorbia peplus, Ocimum basilicum, Oryza sativa, Solanum lycopersicum, and Setaria viridis. Plants were exposed during 30 days to the light gradient and showed significant, but species-dependent, responses in terms of dimension, shape, and color. A time series analysis of phenotypic descriptors highlighted growth changes but also transient responses of plant shapes to the Red:Blue ratio.
Conclusion
This approach, which generated a large reusable dataset, can be adapted for addressing specific needs in crop production or fundamental questions in photobiology.
Name of the research project :
VeLire, Tropical Plant Factory (Plant'HP)
Scopus citations®
without self-citations
3