Abbasi H, Noghabi KA, Ortiz A. 2012. Interaction of a bacterial monorhamnolipid secreted by Pseudomonas aeruginosa MA01 with phosphatidylcholine model membranes. Chemistry and Physics of Lipids 165, 745-752.
Abdel-Mawgoud AM, Lépine F, Déziel E. 2010. Rhamnolipids: diversity of structures, microbial origins and roles. Applied Microbiology and Biotechnology 86, 1323-1336.
Aerts N, Pereira Mendes M, Van Wees SCM. 2021. Multiple levels of crosstalk in hormone networks regulating plant defense. The Plant Journal 105, 489-504.
Aidemark M, Tjellström H, Sandelius AS, Stålbrand H, Andreasson E, Rasmusson AG, Widell S. 2010. Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells. BMC Plant Biology 10, 274.
Albert I, Böhm H, Albert M, et al. 2015. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nature Plants 1, 15140.
Albert I, Hua C, Nürnberger T, Pruitt RN, Zhang L. 2020. Surface sensor systems in plant immunity. Plant Physiology 182, 1582-1596.
Albert I, Zhang L, Bemm H, Nürnberger T. 2019. Structure-function analysis of immune receptor AtRLP23 with its ligand nlp20 and coreceptors AtSOBIR1 and AtBAK1. Molecular Plant-Microbe Interactions 32, 1038-1046.
Alkan N, Friedlander G, Ment D, Prusky D, Fluhr R. 2015. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytologist 205, 801-815.
Amborabeì BE, Bonmort J, Fleurat-Lessard P, Roblin G. 2008. Early events induced by chitosan on plant cells. Journal of Experimental Botany 59, 2317-2324.
Amborabeì BE, Rossard S, Peìrault JM, Roblin G. 2003. Specific perception of ergosterol by plant cells. Comptes Rendus Biologies 326, 363-370.
Amsellem Z, Cohen BA, Gressel J. 2002. Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control. Nature Biotechnology 20, 1035-1039.
Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G. 2006. Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96, 1188-1194.
Azmi NSA, Singkaravanit-Ogawa S, Ikeda K, Kitakura S, Inoue Y, Narusaka Y, Shirasu K, Kaido M, Mise K, Takano Y. 2018. Inappropriate expression of an NLP effector in Colletotrichum orbiculare impairs infection on Cucurbitaceae cultivars via plant recognition of the C-terminal region. Molecular Plant-Microbe Interactions 31, 101-111.
Badawy MEI, Rabea EI. 2011. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry 2011, 1-29.
Bailey BA. 1995. Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca. Phytopathology 85, 1250-1255.
Balleza D, Alessandrini A, Beltrán García MJ. 2019. Role of lipid composition, physicochemical interactions, and membrane mechanics in the molecular actions of microbial cyclic lipopeptides. Journal of Membrane Biology 252, 131-157.
Bechinger B. 1999. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochimica et Biophysica Acta 1462, 157-183.
Bechinger B, Skladnev DA, Ogrel A, Li X, Rogozhkina EV, Ovchinnikova TV, O'Neil JD, Raap J. 2001. 15N and 31P solid-state NMR investigations on the orientation of zervamicin II and alamethicin in phosphatidylcholine membranes. Biochemistry 40, 9428-9437.
Benhamou N. 1992. Ultrastructural and cytochemical aspects of chitosan on Fusarium oxysporum f.sp. radicis-lycopersici, agent of tomato crown and root rot. Phytopathology 82, 1185-1193.
Benjin X, Ling L. 2020. Developments, applications, and prospects of cryo-electron microscopy. Protein Science 29, 872-882.
Bigeard J, Colcombet J, Hirt H. 2015. Signaling mechanisms in patterntriggered immunity (PTI). Molecular Plant 8, 521-539.
Böhm H, Albert I, Oome S, Raaymakers TM, Van den Ackerveken G, Nürnberger T. 2014. A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLoS Pathogens 10, e1004491.
Bokori-Brown M, Martin TG, Naylor CE, Basak AK, Titball RW, Savva CG. 2016. Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein. Nature Communications 7, 11293.
Borner GH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS, Dupree P. 2005. Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiology 137, 104-116.
Boutrot F, Zipfel C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annual Review of Phytopathology 55, 257-286.
Brulé D, Villano C, Davies LJ, et al. 2019. The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharidetriggered immunity. Plant Biotechnology Journal 17, 812-825.
Burkart RC, Stahl Y. 2017. Dynamic complexity: plant receptor complexes at the plasma membrane. Current Opinion in Plant Biology 40, 15-21.
Cacas JL, Buré C, Grosjean K, et al. 2016. Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids. Plant Physiology 170, 367-384.
Cacas JL, Furt F, Le Guédard M, Schmitter JM, Buré C, Gerbeau- Pissot P, Moreau P, Bessoule JJ, Simon-Plas F, Mongrand S. 2012. Lipids of plant membrane rafts. Progress in Lipid Research 51, 272-299.
Cacas JL, Gerbeau-Pissot P, Fromentin J, Cantrel C, Thomas D, Jeannette E, Kalachova T, Mongrand S, Simon-Plas F, Ruelland E. 2017. Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein. Plant, Cell & Environment 40, 585-598.
Cafiso DS. 1994. Alamethicin: a peptide model for voltage gating and protein-membrane interactions. Annual Review of Biophysics and Biomolecular Structure 23, 141-165.
Chen F, D'Auria JC, Tholl D, Ross JR, Gershenzon J, Noel JP, Pichersky E. 2003. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. The Plant Journal 36, 577-588.
Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JD, Felix G, Boller T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500.
Choi MS, Kim W, Lee C, Oh CS. 2013. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. Molecular Plant- Microbe Interactions 26, 1115-1122.
Clifton LA, Campbell RA, Sebastiani F, Campos-Terán J, Gonzalez- Martinez JF, Björklund S, Sotres J, Cárdenas M. 2020. Design and use of model membranes to study biomolecular interactions using complementary surface-sensitive techniques. Advances in Colloid and Interface Science 277, 102118.
Coursol S, Fromentin J, Noirot E, Brière C, Robert F, Morel J, Liang YK, Lherminier J, Simon-Plas F. 2015. Long-chain bases and their phosphorylated derivatives differentially regulate cryptogein-induced production of reactive oxygen species in tobacco (Nicotiana tabacum) BY-2 cells. New Phytologist 205, 1239-1249.
Crouzet J, Arguelles-Arias A, Dhondt-Cordelier S, et al. 2020. Biosurfactants in plant protection against diseases: rhamnolipids and lipopeptides case study. Frontiers in Bioengineering and Biotechnology 8, 1014.
Dadakova K, Klempova J, Jendrisakova T, Lochman J, Kasparovsky T. 2013. Elucidation of signaling molecules involved in ergosterol perception in tobacco. Plant Physiology and Biochemistry 73, 121-127.
Debois D, Fernandez O, Franzil L, Jourdan E, de Brogniez A, Willems L, Clément C, Dorey S, De Pauw E, Ongena M. 2015. Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. Environmental Microbiology Reports 7, 570-582.
Deleu M, Crowet JM, Nasir MN, Lins L. 2014. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: a review. Biochimica et Biophysica Acta 1838, 3171-3190.
Deleu M, Paquot M, Nylander T. 2008. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophysical Journal 94, 2667-2679.
Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J. 2008. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Molecular Plant 1, 423-445.
de Oliveira Pedro R, Ribeiro Pereira A, Oliveira ON, Barbeitas Miranda P. 2020. Interaction of chitosan derivatives with cell membrane models in a biologically relevant medium. Colloids and Surfaces. B, Biointerfaces 192, 111048.
Derevnina L, Dagdas YF, De la Concepcion JC, et al. 2016. Nine things to know about elicitins. New Phytologist 212, 888-895.
Dobeš P, Kmunícek J, Mikes V, Damborský J. 2004. Binding of fatty acids to beta-cryptogein: quantitative structure-activity relationships and design of selective protein mutants. Journal of Chemical Information and Computer Sciences 44, 2126-2132.
Dokládal L, Oboril M, Stejskal K, et al. 2012. Physiological and proteomic approaches to evaluate the role of sterol binding in elicitin-induced resistance. Journal of Experimental Botany 63, 2203-2215.
Domazakis E, Wouters D, Lochman J, Visser RGF, Joosten MHAJ, Vleeshouwers VGAA. 2020. ELR is a true pattern recognition receptor that associates with elicitins from diverse Phytophthora species. bioRxiv doi: 10.1101/2020.09.21.305813. [Preprint]
Domazakis E, Wouters D, Visser RGF, Kamoun S, Joosten MHAJ, Vleeshouwers VGAA. 2018. The ELR-SOBIR1 complex functions as a two-component receptor-like kinase to mount defense against Phytophthora infestans. Molecular Plant-Microbe Interactions 31, 795-802.
Dong H, Delaney TP, Bauer DW, Beer SV. 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. The Plant Journal 20, 207-215.
Dong S, Kong G, Qutob D, Yu X, Tang J, Kang J, Dai T, Wang H, Gijzen M, Wang Y. 2012. The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity. Molecular Plant-Microbe Interactions 25, 896-909.
Du J, Verzaux E, Chaparro-Garcia A, et al. 2015. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nature Plants 1, 15034.
Duclohier H, Wróblewski H. 2001. Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues. Journal of Membrane Biology 184, 1-12.
Eeman M, Deleu M. 2010. From biological membranes to biomimetic model membranes. Biotehnology, Agronomy and Society and Environment 14, 691-708.
El Hassni M, El Hadrami A, Daayf F, Chérif M, Ait Barka E, El Hadrami I. 2004. Chitosan, antifungal product against Fusarium oxysporum f. sp. albedinis and elicitor of defence reactions in date palm roots. Phytopathologia Mediterranea, 43, 195-204.
El-Maarouf H, Barny MA, Rona JP, Bouteau F. 2001. Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Letters 497, 82-84.
Elmayan T, Fromentin J, Riondet C, Alcaraz G, Blein JP, Simon-Plas F. 2007. Regulation of reactive oxygen species production by a 14-3-3 protein in elicited tobacco cells. Plant, Cell & Environment 30, 722-732.
Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W. 2001. Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiology 125, 369-377.
Engelhardt S, Lee J, Gäbler Y, et al. 2009. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ionconducting pore formation and activation of plant immunity. The Plant Journal 57, 706-717.
Faoro F, Maffi D, Cantu D, Iriti M. 2008. Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. BioControl 53, 387-401.
Farace G, Fernandez O, Jacquens L, Coutte F, Krier F, Jacques P, Clément C, Barka EA, Jacquard C, Dorey S. 2015. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Molecular Plant Pathology 16, 177-187.
Farzand A, Moosa A, Zubair M, Khan AR, Massawe VC, Tahir HAS, et al. 2019. Suppression of Sclerotinia sclerotiorum by the induction of systemic resistance and regulation of antioxidant pathways in tomato using fengycin produced by Bacillus amyloliquefaciens FZB42. Biomolecules 9, 613.
Fellbrich G, Blume B, Brunner F, Hirt H, Kroj T, Ligterink W, Romanski A, Nürnberger T. 2000. Phytophthora parasitica elicitor-induced reactions in cells of Petroselinum crispum. Plant & Cell Physiology 41, 692-701.
Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Nürnberger T. 2002. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. The Plant Journal 32, 375-390.
Fiedler S, Heerklotz H. 2015. Vesicle leakage reflects the target selectivity of antimicrobial lipopeptides from Bacillus subtilis. Biophysical Journal 109, 2079-2089.
Fontanilla JM, Montes M, De Prado R. 2005a. Induction of resistance to the pathogenic agent Botrytis cinerea in the cultivation of the tomato by means of the application of the protein "Harpin" (Messenger). Communications in Agricultural and Applied Biological Sciences 70, 35-40.
Fontanilla JM, Montes M, De Prado R. 2005b. Effects of the foliar-applied protein "Harpin(Ea)" (messenger) on tomatoes infected with Phytophthora infestans. Communications in Agricultural and Applied Biological Sciences 70, 41-45.
Fox RO Jr, Richards FM. 1982. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution. Nature 300, 325-330.
Furlan AL, Laurin Y, Botcazon C, Rodríguez-Moraga N, Rippa S, Deleu M, Lins L, Sarazin C, Buchoux S. 2020. Contributions and limitations of biophysical approaches to study of the interactions between amphiphilic molecules and the plant plasma membrane. Plants 9, 648.
Furt F, König S, Bessoule JJ, et al. 2010. Polyphosphoinositides are enriched in plant membrane rafts and form microdomains in the plasma membrane. Plant Physiology 152, 2173-2187.
Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A. 2006. Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions 19, 711-724.
Gerbeau-Pissot P, Der C, Thomas D, Anca IA, Grosjean K, Roche Y, Perrier-Cornet JM, Mongrand S, Simon-Plas F. 2014. Modification of plasma membrane organization in tobacco cells elicited by cryptogein. Plant Physiology 164, 273-286.
Gijzen M, Nürnberger T. 2006. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67, 1800-1807.
Gómez-Gómez L, Boller T. 2002. Flagellin perception: a paradigm for innate immunity. Trends in Plant Science 7, 251-256.
Granado J, Felix G, Boller T. 1995. Perception of fungal sterols in plants (subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells). Plant Physiology 107, 485-490.
Gronnier J, Gerbeau-Pissot P, Germain V, Mongrand S, Simon-Plas F. 2018. Divide and rule: plant plasma membrane organization. Trends in Plant Science 23, 899-917.
Grosjean K, Der C, Robert F, Thomas D, Mongrand S, Simon-Plas F, Gerbeau-Pissot P. 2018. Interactions between lipids and proteins are critical for organization of plasma membrane-ordered domains in tobacco BY-2 cells. Journal of Experimental Botany 69, 3545-3557.
Gust AA, Brunner F, Nürnberger T. 2010. Biotechnological concepts for improving plant innate immunity. Current Opinion in Biotechnology 21, 204-210.
Haapalainen M, Dauphin A, Li CM, Bailly G, Tran D, Briand J, Bouteau F, Taira S. 2012. HrpZ harpins from different Pseudomonas syringae pathovars differ in molecular interactions and in induction of anion channel responses in Arabidopsis thaliana suspension cells. Plant Physiology and Biochemistry 51, 168-174.
Haapalainen M, Engelhardt S, Küfner I, Li CM, Nürnberger T, Lee J, Romantschuk M, Taira S. 2011. Functional mapping of harpin HrpZ of Pseudomonas syringae reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction. Molecular Plant Pathology 12, 151-166.
Hadwiger LA, Beckman JM. 1980. Chitosan as a component of pea- Fusarium solani interactions. Plant Physiology 66, 205-211.
Halling KK, Slotte JP. 2004. Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization. Biochimica et Biophysica Acta 1664, 161-171.
Han Q, Wu F, Wang X, Qi H, Shi L, Ren A, Liu Q, Zhao M, Tang C. 2015. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environmental Microbiology 17, 1166-1188.
Heerklotz H, Seelig J. 2000. Titration calorimetry of surfactant-membrane partitioning and membrane solubilization. Biochimica et Biophysica Acta 1508, 69-85.
Heerklotz H, Wieprecht T, Seeling J. 2004. Membrane perturbation by the lipopeptide surfactin and detergents as studied by deuterium NMR. Journal of Physical Chemistry 108, 4909-4915.
Henry G, Deleu M, Jourdan E, Thonart P, Ongena M. 2011. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cellular Microbiology 13, 1824-1837.
Hirasawa KI, Amano T, Shioi Y. 2004. Lipid-binding form is a key conformation to induce a programmed cell death initiated in tobacco BY-2 cells by a proteinaceous elicitor of cryptogein. Physiologia Plantarum 121, 196-203.
Huby E, Napier JA, Baillieul F, Michaelson LV, Dhondt-Cordelier S. 2020. Sphingolipids: towards an integrated view of metabolism during the plant stress response. New Phytologist 225, 659-670.
Huggins DJ, Biggin PC, Dämgen MA, et al. 2019. Biomolecular simulations: from dynamics and mechanisms to computational assays of biological activity. WIREs Computational Molecular Science 9, e1393.
Iriti M, Faoro F. 2008. Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiology and Biochemistry 46, 1106-1111.
Iriti M, Faoro F. 2009. Chitosan as a MAMP, searching for a PRR. Plant Signaling & Behavior 4, 66-68.
Iriti M, Varoni EM. 2015. Chitosan-induced antiviral activity and innate immunity in plants. Environmental Science and Pollution Research International 22, 2935-2944.
Jang YS, Sohn SI, Wang MH. 2006. The hrpN gene of Erwinia amylovora stimulates tobacco growth and enhances resistance to Botrytis cinerea. Planta 223, 449-456.
Jelesarov I, Bosshard HR. 1999. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. Journal of Molecular Recognition 12, 3-18.
Jiang RH, Tyler BM, Whisson SC, Hardham AR, Govers F. 2006. Ancient origin of elicitin gene clusters in Phytophthora genomes. Molecular Biology and Evolution 23, 338-351.
Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, Thonart P, Ongena M. 2009. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Molecular Plant-Microbe Interactions 22, 456-468.
Kadota Y, Goh T, Tomatsu H, Tamauchi R, Higashi K, Muto S, Kuchitsu K. 2004. Cryptogein-induced initial Events in tobacco BY-2 cells: pharmacological characterization of molecular relationship among cytosolic Ca2+ transients, anion efflux and production of reactive oxygen species. Plant and Cell Physiology 45, 160-170.
Kamoun S, Young M, Glascock CB, Tyler BM. 1993. Extracellular protein elicitors form Phytophthora: host-specificity and induction of resistance to bacterial and fungal phytopathogens. Molecular Plant-Microbe Interactions 6, 15-25.
Kasparovsky T, Milat ML, Humbert C, Blein JP, Havel L, Mikes V. 2004. Elicitation of tobacco cells with ergosterol activates a signal pathway including mobilization of internal calcium. Plant Physiology and Biochemistry 41, 495-501.
Kauss H, Jeblick W. 1996. Influence of salicylic acid on the induction of competence for H2O2 Elicitation (comparison of ergosterol with other elicitors). Plant Physiology 111, 755-763.
Kawamura Y, Hase S, Takenaka S, Kanayama Y, Yoshioka H, Kamoun S, Takahashi H. 2009. INF1 elicitin activates jasmonic acid- and ethylenemediated signalling pathways and induces resistance to bacterial wilt disease in tomato. Journal of Phytopathology 157, 287-297.
Kawagoe Y, Shiraishi S, Kondo H, Yamamoto S, Aoki Y, Suzuki S. 2015. Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochemical and Biophysical Research Communications 460, 1015-1020.
Keinath NF, Kierszniowska S, Lorek J, Bourdais G, Kessler SA, Shimosato-Asano H, Grossniklaus U, Schulze WX, Robatzek S, Panstruga R. 2010. PAMP (pathogen-associated molecular pattern)- induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. Journal of Biological Chemistry 285, 39140-39149.
Keller H, Blein JP, Bonnet P, Ricci P. 1996a. Physiological and molecular characteristics of elicitin-induced systemic acquired resistance in tobacco. Plant Physiology 110, 365-376.
Keller H, Bonnet P, Galiana E, Pruvot L, Friedrich L, Ryals J, Ricci P. 1996b. Salicylic acid mediates elicitin-induced systemic acquired resistance, but not necrosis in tobacco. Molecular Plant-Microbe Interactions 9, 696-703.
Khoza TG, Dubery IA, Piater LA. 2019. Identification of candidate ergosterol-responsive proteins associated with the plasma membrane of Arabidopsis thaliana. International Journal of Molecular Sciences 20, 1302.
Kim JG, Park BK, Yoo CH, Jeon E, Oh J, Hwang I. 2003. Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. Journal of Bacteriology 185, 3155-3166.
Kim Y-H, Yeo W-H, Kim Y-S, Kim K-S. 2000. Antiviral activity of antibiotic peptaibols, chrysospemins B and D, produced by Apiocrea sp. 14T against TMV infection. Journal of Microbiology and Biotechnology 10, 522-528.
Kleemann J, Rincon-Rivera LJ, Takahara H, et al. 2012. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathogens 8, e1002643.
Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H. 1985. Chitosanelicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiology 77, 544-551.
Kong M, Chen XG, Xing K, Park HJ. 2010. Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology 144, 51-63.
Kumar R, Das AJ. 2018. Rhamnolipid biosurfactants and their properties. In: Kumar R and Das AJ, eds. Rhamnolipid biosurfactant: recent trends in production and application. Singapore: Springer Nature Singapore, 1-13.
Kutschera A, Dawid C, Gisch N, et al. 2019. Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants. Science 364, 178-181.
Laloi M, Perret A-M, Chatre L, et al. 2007. Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiology 143, 461-472.
Laquitaine L, Gomeis E, François J, Marchive C, Pascal S, Hamdi S, Atanassova R, Delrot S, Coutos-Theìvenot P. 2006. Molecular basis of ergosterol- induced protection of grape against Botrytis cinerea: induction of type I LTP promoter activity, WRKY, and stilbene synthase gene expression. Molecular Plant-Microbe Interactions 19, 1103-1112.
Lascombe MB, Ponchet M, Venard P, Milat ML, Blein JP, Prange T. 2002. The 1.45 Å resolution structure of the cryptogein-cholesterol complex: a close-up view of a sterol carrier protein (SCP) active site. Acta Crystallographica D58, 1442-1447.
Leborgne-Castel N, Lherminier J, Der C, Fromentin J, Houot V, Simon-Plas F. 2008. The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in bright yellow-2 tobacco cells. Plant Physiology 146, 1255-1266.
Lee J, Klessig DF, Nürnberger T. 2001a. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogenactivated protein kinase activity. The Plant Cell 13, 1079-1093.
Lee J, Klüsener B, Tsiamis G, et al. 2001b. HrpZPsph from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proceedings of the National Academy of Sciences, USA 98, 289-294.
Lefebvre B, Furt F, Hartmann MA, et al. 2007. Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiology 144, 402-418.
Leitgeb B, Szekeres A, Manczinger L, Vágvölgyi C, Kredics L. 2007. The history of alamethicin: a review of the most extensively studied peptaibol. Chemistry & Biodiversity 4, 1027-1051.
Lenarcic T, Albert I, Böhm H, et al. 2017. Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science 358, 1431-1434.
Lherminier J, Elmayan T, Fromentin J, Elaraqui KT, Vesa S, Morel J, Verrier JL, Cailleteau B, Blein JP, Simon-Plas F. 2009. NADPH oxidase-mediated reactive oxygen species production: subcellular localization and reassessment of its role in plant defense. Molecular Plant-Microbe Interactions 22, 868-881.
Li Y, Héloir MC, Zhang X, et al. 2019. Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation. Molecular Plant Pathology 20, 1037-1050.
Liu D, Jiao S, Cheng G, Li X, Pei Z, Pei Y, Yin H, Du Y. 2018. Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell. International Journal of Biological Macromolecules 111, 1083-1090.
Liu Y, Zhou X, Liu W, Miao W. 2020. The stability of the coiled-coil structure near to N-terminus influence the heat resistance of harpin proteins from Xanthomonas. BMC Microbiology 20, 344.
Liu Y, Zhou X, Liu W, Xiong X, Lv C, Zhou X, Miao W. 2018. Functional regions of HpaXm as elicitors with specific heat tolerance induce the hypersensitive response or plant growth promotion in nonhost plants. PLoS One 13, e0188788.
Lochman J, Mikes V. 2006. Ergosterol treatment leads to the expression of a specific set of defence-related genes in tobacco. Plant Molecular Biology 62, 43-51.
Lu Y, Tsuda K. 2021. Intimate association of PRR- and NLR-mediated signaling in plant immunity. Molecular Plant-Microbe Interactions 34, 3-14.
Luzuriaga-Loaiza WP, Schellenberger R, De Gaetano Y, et al. 2018. Synthetic Rhamnolipid Bolaforms trigger an innate immune response in Arabidopsis thaliana. Scientific Reports 8, 8534.
Ma Z, Ongena M, Höfte M. 2017. The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Reports 36, 1731-1746.
Macho AP, Zipfel C. 2014. Plant PRRs and the activation of innate immune signaling. Molecular Cell 54, 263-272.
Mamode Cassim A, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, Boutté Y, Gerbeau-Pissot P, Simon-Plas F, Mongrand S. 2019. Plant lipids: key players of plasma membrane organization and function. Progress in Lipid Research 73, 1-27.
Matic S, Geisler DA, Møller IM, Widell S, Rasmusson AG. 2005. Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells. Biochemical Journal 389, 695-704.
Mattauch S, Koutsioubas A, Rücker U, et al. 2018. The high-intensity reflectometer of the Jülich Centre for Neutron Science: MARIA. Journal of Applied Crystallography 51, 646-654.
Medina CA, Reyes PA, Trujillo CA, et al. 2018. The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Molecular Plant Pathology 19, 593-606.
Michaelson LV, Napier JA, Molino D, Faure JD. 2016. Plant sphingolipids: their importance in cellular organization and adaption. Biochimica et Biophysica Acta 1861, 1329-1335.
Mikes V, Milat ML, Ponchet M, Panabières F, Ricci P, Blein JP. 1998. Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins. Biochemical and Biophysical Research Communications 245, 133-139.
Mikes V, Milat ML, Ponchet M, Ricci P, Blein JP. 1997. The fungal elicitor cryptogein is a sterol carrier protein. FEBS Letters 416, 190-192.
Mongrand S, Morel J, Laroche J, Claverol S, Carde J-P, Hartmann M-A, Bonneu M, Simon-Plas F, Lessire R, Bessoule J-J. 2004. Lipid rafts in higher plant cells: purification and characterization of Triton X-100 insoluble microdomains from tobacco plasma membrane. Journal of Biological Chemistry 179, 36277-36286.
Monnier N, Cordier M, Dahi A, et al. 2020. Semipurified rhamnolipid mixes protect Brassica napus against Leptosphaeria maculans early infections. Phytopathology 110, 834-842.
Monnier N, Furlan A, Botcazon C, Dahi A, Mongelard G, Cordelier S, Clément C, Dorey S, Sarazin C, Rippa S. 2018. Rhamnolipids from Pseudomonas aeruginosa are elicitors triggering Brassica napus protection against Botrytis cinerea without physiological disorders. Frontiers in Plant Science 9, 1170.
Monnier N, Furlan AL, Buchoux S, Deleu M, Dauchez M, Rippa S, Sarazin C. 2019. Exploring the dual interaction of natural rhamnolipids with plant and fungal bbiomimetic plasma membranes through biophysical studies. International Journal of Molecular Sciences 20, 1009.
Montagner C, Arquint C, Cornelis GR. 2011. Translocators YopB and YopD from Yersinia enterocolitica form a multimeric integral membrane complex in eukaryotic cell membranes. Journal of Bacteriology 193, 6923-6928.
Montesano M, Brader G, Palva ET. 2003. Pathogen derived elicitors: searching for receptors in plants. Molecular Plant Pathology 4, 73-79.
Moreau RA, Nyström L, Whitaker BD, Winkler-Moser JK, Baer DJ, Gebauer SK, Hicks KB. 2018. Phytosterols and their derivatives: structural diversity, distribution, metabolism, analysis, and health-promoting uses. Progress in Lipid Research 70, 35-61.
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. 2020. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 170, 173-202.
Nagano M, Ishikawa T, Fujiwara M, Fukao Y, Kawano Y, Kawai- Yamada M, Shimamoto K. 2016. Plasma membrane microdomains are essential for Rac1-RbohB/H-mediated immunity in rice. The Plant Cell 28, 1966-1983.
Nasir MN, Lins L, Crowet JM, et al. 2017. Differential interaction of synthetic glycolipids with biomimetic plasma membrane lipids correlates with the plant biological response. Langmuir 33, 9979-9987.
Nishimura S, Matsumori N. 2020. Chemical diversity and mode of action of natural products targeting lipids in the eukaryotic cell membrane. Natural Product Reports 37, 677-702.
Niu L, Yang J, Zhang J, He H, Xing G, Zhao Q, Guo D, Sui L, Zhong X, Yang X. 2019. Introduction of the harpinXooc-encoding gene hrf2 in soybean enhances resistance against the oomycete pathogen Phytophthora sojae. Transgenic Research 28, 257-266.
No HK, Park NY, Lee SH, Meyers SP. 2002. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology 74, 65-72.
Noman A, Aqeel M, Irshad MK, Qari SH, Hashem M, Alamri S, AbdulMajeed AM, Al-Sadi AM. 2020. Elicitins as molecular weapons against pathogens: consolidated biotechnological strategy for enhancing plant growth. Critical Reviews in Biotechnology 40, 821-832.
Nürnberger T, Brunner F, Kemmerling B, Piater L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunological Reviews 198, 249-266.
Obounou Akong F, Bouquillon S. 2015. Efficient syntheses of bolaform surfactants from l-rhamnose and/or 3-(4-hydroxyphenyl)propionic acid. Green Chemistry 17, 3290-3300.
Oh CS, Beer SV. 2007. AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growthenhancing effect of HrpN in Arabidopsis. Plant Physiology 145, 426-436.
Ono E, Mise K, Takano Y. 2020. RLP23 is required for Arabidopsis immunity against the grey mould pathogen Botrytis cinerea. Scientific Reports 10, 13798.
Oome S, Raaymakers TM, Cabral A, Samwel S, Böhm H, Albert I, Nürnberger T, Van den Ackerveken G. 2014. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proceedings of the National Academy of Sciences, USA 111, 16955-16960.
Oome S, Van den Ackerveken G. 2014. Comparative and functional analysis of the widely occurring family of Nep1-like proteins. Molecular Plant- Microbe Interactions 27, 1081-1094.
Osman H, Vauthrin S, Mikes V, Milat ML, Panabières F, Marais A, Brunie S, Maume B, Ponchet M, Blein JP. 2001. Mediation of elicitin activity on tobacco is assumed by elicitin-sterol complexes. Molecular Biology of the Cell 12, 2825-2834.
Ott T. 2017. Membrane nanodomains and microdomains in plant-microbe interactions. Current Opinion in Plant Biology 40, 82-88.
Ottmann C, Luberacki B, Küfner I, et al. 2009. A common toxin fold mediates microbial attack and plant defense. Proceedings of the National Academy of Sciences, USA 106, 10359-10364.
Parasassi T, De Stasio G, d'Ubaldo A, Gratton E. 1990. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophysical Journal 57, 1179-1186.
Pemberton CL, Salmond GP. 2004. The Nep1-like proteins-a growing family of microbial elicitors of plant necrosis. Molecular Plant Pathology 5, 353-359.
Peng KC, Wang CW, Wu CH, Huang CT, Liou RF. 2015. Tomato SOBIR1/ EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen Phytophthora parasitica. Molecular Plant-Microbe Interactions 28, 913-926.
Pereira AR, Fiamingo A, de O Pedro R, Campana-Filho SP, Miranda PB, Oliveira ON Jr. 2020. Enhanced chitosan effects on cell membrane models made with lipid raft monolayers. Colloids and Surfaces. B, Biointerfaces 193, 111017.
Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V. 2010. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitinbinding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. Journal of Biological Chemistry 285, 28902-28911.
Platel R, Chaveriat L, Le Guenic S, et al. 2021. Importance of the C12 carbon chain in the biological activity of rhamnolipids conferring protection in wheat against Zymoseptoria tritici. Molecules 26, 40.
Plešková V, Kašparovský T, Oboril M, Ptácková N, Chaloupková R, Ladislav D, Damborský J, Lochman J. 2011. Elicitin-membrane interaction is driven by a positive charge on the protein surface: role of Lys13 residue in lipids loading and resistance induction. Plant Physiology and Biochemistry 49, 321-328.
Pokotylo I, Kravets V, Martinec J, Ruelland E. 2018. The phosphatidic acid paradox: too many actions for one molecule class? Lessons from plants. Progress in Lipid Research 71, 43-53.
Popham PL, Pike SM, Novacky A. 1995. The effect of harpin from Erwinia amylovora on the plasmalemma of suspension-cultured tobacco cells. Physiological and Molecular Plant Pathology 47, 39-50.
Povero G, Loreti E, Pucciariello C, Santaniello A, Di Tommaso D, Di Tommaso G, Kapetis D, Zolezzi F, Piaggesi A, Perata P. 2011. Transcript profiling of chitosan-treated Arabidopsis seedlings. Journal of Plant Research 124, 619-629.
Pršic J, Ongena M. 2020. Elicitors of plant immunity triggered by beneficial bacteria. Frontiers in Plant Science 11, 594530.
Qutob D, Kemmerling B, Brunner F, et al. 2006. Phytotoxicity and innate immune responses induced by Nep1-like proteins. The Plant Cell 18, 3721-3744.
Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology Reviews 34, 1037-1062.
Racapé J, Belbahri L, Engelhardt S, et al. 2005. Ca2+-dependent lipid binding and membrane integration of PopA, a harpin-like elicitor of the hypersensitive response in tobacco. Molecular Microbiology 58, 1406-1420.
Raho N, Ramirez L, Lanteri ML, Gonorazky G, Lamattina L, ten Have A, Laxalt AM. 2011. Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. Journal of Plant Physiology 168, 534-539.
Rakwal R, Tamogami S, Agrawal GK, Iwahashi H. 2002. Octadecanoid signaling component "burst" in rice (Oryza sativa L.) seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochemical and Biophysical Research Communications 295, 1041-1045.
Ramírez-Valdespino CA, Casas-Flores S, Olmedo-Monfil V. 2019. Trichoderma as a model to study effector-like molecules. Frontiers in Microbiology 10, 1030.
Reglinski T, Elmer PAG, Taylor JT, Wood PN, Hoyte SM. 2010. Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathology 59, 882-890.
Ricci P. 1997. Induction of the hypersensitive response and systemic acquired resistance by fungal proteins: the case of elicitins. In: Stacey G, Keen NT, eds. Plant-Microbe Interactions. Boston: Springer US, 53-75.
Ricci P, Bonnet P, Huet JC, Sallantin M, Beauvais-Cante F, Bruneteau M, Billard V, Michel G, Pernollet JC. 1989. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. European Journal of Biochemistry 183, 555-563.
Rippa S, Eid M, Formaggio F, Toniolo C, Béven L. 2010. Hypersensitivelike response to the pore-former peptaibol alamethicin in Arabidopsis thaliana. ChemBioChem 11, 2042-2049.
Robineau M, Le Guenic S, Sanchez L, et al. 2020. Synthetic monorhamnolipids display direct antifungal effects and trigger an innate immune response in tomato against Botrytis cinerea. Molecules 25, 3108.
Roche Y, Gerbeau-Pissot P, Buhot B, Thomas D, Bonneau L, Gresti J, Mongrand S, Perrier-Cornet JM, Simon-Plas F. 2008. Depletion of phytosterols from the plant plasma membrane provides evidence for disruption of lipid rafts. FASEB Journal 22, 3980-3991.
Rojko N, Dalla Serra M, Macek P, Anderluh G. 2016. Pore formation by actinoporins, cytolysins from sea anemones. Biochimica et Biophysica Acta 1858, 446-456.
Rondelli V, Brocca P, Motta S, Messa M, Colombo L, Salmona M, Fragneto G, Cantu L, Del Favero E. 2016. Amyloid-ß peptides in interaction with raft-mime model membranes: a neutron reflectivity insight. Scientific Reports 6, 20997.
Rossard S, Luini E, Pérault JM, Bonmort J, Roblin G. 2006. Early changes in membrane permeability, production of oxidative burst and modification of PAL activity induced by ergosterol in cotyledons of Mimosa pudica. Journal of Experimental Botany 57, 1245-1252.
Rossard S, Roblin G, Atanassova R. 2010. Ergosterol triggers characteristic elicitation steps in Beta vulgaris leaf tissues. Journal of Experimental Botany 61, 1807-1816.
Saijo Y, Loo EP, Yasuda S. 2018. Pattern recognition receptors and signaling in plant-microbe interactions. The Plant Journal 93, 592-613.
Salnikov ES, Friedrich H, Li X, Bertani P, Reissmann S, Hertweck C, O'Neil JD, Raap J, Bechinger B. 2009. Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15N and 31P solid-state NMR spectroscopy. Biophysical Journal 96, 86-100.
Sánchez M, Aranda FJ, Teruel JA, Ortiz A. 2009. Interaction of a bacterial dirhamnolipid with phosphatidylcholine membranes: a biophysical study. Chemistry and Physics of Lipids 161, 51-55.
Sanchez L, Courteaux B, Hubert J, Kauffmann S, Renault JH, Clément C, Baillieul F, Dorey S. 2012. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiology 160, 1630-1641.
Sandor R, Der C, Grosjean K, Anca I, Noirot E, Leborgne-Castel N, Lochman J, Simon-Plas F, Gerbeau-Pissot P. 2016. Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence. Journal of Experimental Botany 67, 5173-5185.
Santhanam P, van Esse HP, Albert I, Faino L, Nürnberger T, Thomma BP. 2013. Evidence for functional diversification within a fungal NEP1-like protein family. Molecular Plant-Microbe Interactions 26, 278-286.
Schellenberger R, Touchard M, Clément C, Baillieul F, Cordelier S, Crouzet J, Dorey S. 2019. Apoplastic invasion patterns triggering plant immunity: plasma membrane sensing at the frontline. Molecular Plant Pathology 20, 1602-1616.
Schouten A, Van Baarlen P, Van Kan JAL. 2008. Phytotoxic Nep1-like proteins from the necrotrophic fungus Botrytis cinerea associate with membranes and the nucleus of plant cells. New Phytologist 177, 493-505.
Schumacher S, Grosser K, Voegele RT, Kassemeyer HH, Fuchs R. 2020. Identification and characterization of Nep1-like proteins from the grapevine downy mildew pathogen Plasmopara viticola. Frontiers in Plant Science 11, 65.
Seidl MF, Van den Ackerveken G. 2019. Activity and phylogenetics of the broadly occurring family of microbial Nep1-like proteins. Annual Review of Phytopathology 57, 367-386.
Simon-Plas F, Elmayan T, Blein J-P. 2002. The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. The Plant Journal 31, 137-147.
Stanislas T, Bouyssie D, Rossignol M, Vesa S, Fromentin J, Morel J, Pichereaux C, Monsarrat B, Simon-Plas F. 2009. Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco. Molecular & Cellular Proteomics 8, 2186-2198.
Starý T, Satková P, Piterková J, Mieslerová B, Luhová L, Mikulík J, Kašparovský T, Petrivalský M, Lochman J. 2019. The elicitin β-cryptogein's activity in tomato is mediated by jasmonic acid and ethylene signalling pathways independently of elicitin-sterol interactions. Planta 249, 739-749.
Tan C, Xue J, Eric K, Feng B, Zhang X, Xia S. 2013. Dual effects of chitosan decoration on the liposomal membrane physicochemical properties as affected by chitosan concentration and molecular conformation. Journal of Agricultural and Food Chemistry 61, 6901-6910.
Tan C, Zhang Y, Abbas S, Feng B, Zhang X, Xia W, Xia S. 2015. Biopolymer-lipid bilayer interaction modulates the physical properties of liposomes: mechanism and structure. Journal of Agricultural and Food Chemistry 63, 7277-7285.
Thippeswamy HS, Sood SK, Venkateswarlu R, Raj I. 2009. Membranes of five-fold alamethicin-resistant Staphylococcus aureus, Enterococcus faecalis and Bacillus cereus show decreased interactions with alamethicin due to changes in membrane fluidity and surface charge. Annals of Microbiology 59, 593-601.
Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR. 2005. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121, 247-256.
Tugizimana F, Steenkamp PA, Piater LA, Dubery IA. 2014. Multiplatform metabolomic analyses of ergosterol-induced dynamic changes in Nicotiana tabacum cells. PLoS One 9, e87846.
Van den Ackerveken G. 2017. How plants differ in toxin-sensitivity. Science 358, 1383-1384.
Van den Ackerveken GF, Vossen P, De Wit PJ. 1993. The AVR9 racespecific elicitor of Cladosporium fulvum is processed by endogenous and plant proteases. Plant Physiology 103, 91-96.
Varnier AL, Sanchez L, Vatsa P, et al. 2009. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant, Cell & Environment 32, 178-193.
Vatsa P, Chiltz A, Luini E, Vandelle E, Pugin A, Roblin G. 2011. Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells. Plant Physiology and Biochemistry 49, 764-773.
Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S. 2010. Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. International Journal of Molecular Sciences 11, 5095-5108.
Vauthrin S, Mikes V, Milat ML, Ponchet M, Maume B, Osman H, Blein JP. 1999. Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes. Biochimica et Biophysica Acta 1419, 335-342.
Veit S, Wörle JM, Nürnberger T, Koch W, Seitz HU. 2001. A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis, and tobacco. Plant Physiology 127, 832-841.
Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C. 2007. The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Molecular Plant Pathology 8, 737-746.
Vögele M, Bhaskara RM, Mulvihill E, van Pee K, Yildiz Ö, Kühlbrandt W, Müller DJ, Hummer G. 2019. Membrane perforation by the poreforming toxin pneumolysin. Proceedings of the National Academy of Sciences, USA 116, 13352-13357.
Wang J, Chai J. 2020. Structural insights into the plant immune receptors PRRs and NLRs. Plant Physiology 182, 1566-1581.
Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang HW, Zhou JM, Chai J. 2019. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, aav5868.
Wang X, Zhang L, Ji H, Mo X, Li P, Wang J, Dong H. 2018. Hpa1 is a type III translocator in Xanthomonas oryzae pv. oryzae. BMC Microbiology 18, 105.
Walker-Simmons M, Jin D, West CA, Hadwiger L, Ryan CA. 1984. Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments, and chitosans. Plant Physiology 76, 833-836.
Xie L, Liu Y, Wang H, Liu W, Di R, Miao W, Zheng F. 2017. Characterization of harpinXoo induced hypersensitive responses in non host plant, tobacco. Journal of Plant Biochemistry and Biotechnology 26, 73-79.
Xu X, Bittman R, Duportail G, Heissler D, Vlicheze C, London E. 2001. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Journal of Biological Chemistry 276, 33540-33546.
Yamamoto S, Shiraishi S, Suzuki S. 2015. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Letters in Applied Microbiology 60, 379-386.
Yilmaz N, Yamaji-Hasegawa A, Hullin-Matsuda F, Kobayashi T. 2018. Molecular mechanisms of action of sphingomyelin-specific pore-forming toxin, lysenin. Seminars in Cell & Developmental Biology 73, 188-198.
Yu M, Cui Y, Zhang X, Li R, Lin J. 2020. Organization and dynamics of functional plant membrane microdomains. Cellular and Molecular Life Sciences 77, 275-287.
Zhou J, Zhang Y. 2020. Plant immunity: danger perception and signaling. Cell 181, 978-989.
Zhao P, Ren A, Dong P, Sheng Y, Chang X, Zhang X. 2018. The antimicrobial peptaibol trichokonin IV promotes plant growth and induces systemic resistance against Botrytis cinerea infection in moth orchid. Journal of Phytopathology 166, 346-354.
Zuppini A, Baldan B, Millioni R, Favaron F, Navazio L, Mariani P. 2004. Chitosan induces Ca2+-mediated programmed cell death in soybean cells. New Phytologist 161, 557-568.