FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Geilfus, N.-X.; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
Munson, K. M.; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada, Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, United States
Eronen-Rasimus, E.; Department of Microbiology, University of Helsinki, Helsinki, Finland, Finnish Environment Institute, SYKE, Helsinki, Finland
Kaartokallio, H.; Finnish Environment Institute, SYKE, Helsinki, Finland
Lemes, M.; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
Wang, F.; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
Rysgaard, S.; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada, Arctic Research Center, Aarhus University, Aarhus, Denmark
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU)
Language :
English
Title :
Landfast sea ice in the Bothnian Bay (Baltic Sea) as a temporary storage compartment for greenhouse gases
Anderson, IC, Levine, JS. 1986. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. Applied Environmental Microbiology 51(5): 938–945. DOI: http://dx.doi.org/10.1128/AEM.51.5.938-945.1986.
Arctic Monitoring and Assessment Programme. 2015. AMAP assessment 2015: Methane as an Arctic climate forcer. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP), pp. vii þ 139.
Arrigo, KR. 2017. Sea ice as a habitat for primary producers, in Thomas, DN ed., Sea ice. UK: John Wiley: 352–369. DOI: http://dx.doi.org/10.1002/9781118778371.ch14.
Bakker, DCE, Bange, HW, Gruber, N, Johannessen, T, Upstill-Goddard, RC, Borges, AV, Delille, B, Löscher, CR, Naqvi, SWA, Omar, AM, Santana-Casiano, JM. 2014. Air-sea interactions of natural long-lived greenhouse gases (CO2, N2O, CH4) in a changing climate, in Liss, PS, Johnson, MT eds., Ocean-atmosphere interactions of gases and particles. Berlin, Heidelberg: Springer: 113–169. DOI: http://dx.doi.org/10.1007/978-3-642-25643-1_3.
Bange, HW, Bartell, UH, Rapsomanikis, S, Andreae, MO. 1994. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochemical Cycles 8(4): 465–480. DOI: http://dx.doi.org/10.1029/94GB02181.
Beldowski, J, Löffler, A, Schneider, B, Joensuu, L. 2010. Distribution and biogeochemical control of total CO2 and total alkalinity in the Baltic Sea. Journal of Marine Systems 81(3): 252–259. DOI: http://dx.doi.org/10.1016/j.jmarsys.2009.12.020.
Bluhm, BA, Swadling, KM, Gradinger, R. 2017. Sea ice as a habitat for macrograzers, in Thomas, DN ed., Sea ice. UK: John Wiley: 394–414. DOI: http://dx.doi.org/10.1002/9781118778371.ch16.
Borges, AV. 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28(1): 3–27. DOI: http://dx.doi.org/10.1007/ BF02732750.
Borges, AV, Champenois, W, Gypens, N, Delille, B, Harlay, J. 2016. Massive marine methane emissions from near-shore shallow coastal areas. Scientific Reports 6(1): 1–8. DOI: http://dx.doi.org/10.1038/ srep27908.
Bowman, JS, Rasmussen, S, Blom, N, Deming, JW, Rysgaard, S, Sicheritz-Ponten, T. 2012. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. ISME Journal 6(1): 11–20. DOI: http://dx.doi.org/10.1038/ismej.2011.76.
Caron, DA, Gast, RJ, Garneau, M-È. 2017. Sea ice as a habitat for micrograzers, in Thomas, DN ed., Sea ice. UK: John Wiley. DOI: http://dx.doi.org/10.1002/ 9781118778371.ch15.
Cox, GFN, Weeks, WF. 1983. Equations for determining the gas and brine volumes in sea-ice samples. Journal of Glaciology 29(102): 306–316. DOI: http://dx.doi.org/10.3189/S0022143000008364.
Crabeck, O, Delille, B, Thomas, D, Geilfus, NX, Rysgaard, S, Tison, JL. 2014. CO2 and CH4 in sea ice from a Subarctic fjord under influence of riverine input. Biogeosciences 11(23): 6525–6538. DOI: http://dx.doi.org/10.5194/bg-11-6525-2014.
Crabeck, O, Galley, RJ, Mercury, L, Delille, B, Tison, JL, Rysgaard, S. 2019. Evidence of freezing pressure in sea ice discrete brine inclusions and its impact on aqueous-gaseous equilibrium. Journal of Geophysical Research: Oceans 124(3): 1660–1678. DOI: http://dx.doi.org/10.1029/2018JC014597.
Damm, E, Rudels, B, Schauer, U, Mau, S, Dieckmann, G. 2015. Methane excess in Arctic surface water-triggered by sea ice formation and melting. Scientific Reports 5: 16179. DOI: http://dx.doi.org/10.1038/ srep16179.
Deming, JW, Collins, E. 2017. Sea ice as a habitat for Bacteria, Archaea and viruses, in Thomas, DN ed., Sea ice. UK: John Wiley: 326–351. DOI: http://dx.doi.org/10.1002/9781118778371.ch13.
Eicken, H. 2003. From the microscopic, to the macroscopic, to the regional scale: Growth, microstructure and properties of sea ice, in Thomas, DN ed., Sea ice. UK: John Wiley: 22–81. DOI: http://dx.doi.org/10.1002/9780470757161.ch2.
Frankignoulle, M, Abril, G, Borges, A, Bourge, I, Canon, C, Delille, B, Libert, E, Théate, JM. 1998. Carbon dioxide emission from European Estuaries. Science 282(5388): 434–436. DOI: http://dx.doi.org/10.1126/science.282.5388.434.
Fransson, A, Chierici, M, Abrahamsson, K, Andersson, M, Granfors, A, Gårdfeldt, K, Torstensson, A, Wulff, A. 2015. CO2-system development in young sea ice and CO2 gas exchange at the ice/air interface mediated by brine and frost flowers in Kongsfjorden, Spitsbergen. Annals of Glaciology 56(69): 245–257. DOI: http://dx.doi.org/10.3189/2015Ao G69A563.
Fransson, A, Chierici, M, Skjelvan, I, Olsen, A, Assmy, P, Peterson, AK, Spreen, G, Ward, B. 2017. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes. Journal of Geophysical Research: Oceans 122(7): 5566–5587. DOI: http://dx.doi.org/10.1002/2016JC012478.
Geilfus, NX, Carnat, G, Dieckmann, GS, Halden, N, Nehrke, G, Papakyriakou, TN, Tison, JL, Delille, B. 2013. First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth. Journal of Geophysical Research: Oceans 118: 244–255. DOI: http://dx.doi.org/10.1029/2012JC007980.
Geilfus, NX, Carnat, G, Papakyriakou, T, Tison, JL, Else, B, Thomas, H, Shadwick, E, Delille, B. 2012. Dynamics of pCO2 and related air-ice CO2 fluxes in the Arctic coastal zone (Amundsen Gulf, Beaufort Sea). Journal of Geophysical Research: Oceans 117(C9). DOI: http://dx.doi.org/10.1029/2011JC 007118.
Geilfus, NX, Galley, RJ, Crabeck, O, Papakyriakou, T, Landy, J, Tison, JL, Rysgaard, S. 2015. Inorganic carbon dynamics of melt-pond-covered first-year sea ice in the Canadian Arctic. Biogeosciences 12(6): 2047–2061. DOI: http://dx.doi.org/10.5194/bg-12-2047-2015.
Geilfus, NX, Galley, RJ, Else, BGT, Campbell, K, Papakyriakou, T, Crabeck, O, Lemes, M, Delille, B, Rysgaard, S. 2016. Estimates of ikaite export from sea ice to the underlying seawater in a sea ice–seawater mesocosm. The Cryosphere 10(5): 2173–2189. DOI: http://dx.doi.org/10.5194/tc-10-2173-2016.
Geilfus, NX, Munson, KM, Lemes, M, Wang, F, Tison, JL, Rysgaard, S. 2021. Meteoric water contribution to sea ice formation and its control of the surface water carbonate cycle in the Wandel Sea shelf, northeastern Greenland. Elementa: Science of the Anthropocene 9(1). DOI: http://dx.doi.org/10.1525/elementa.2021. 00004.
Geilfus, NX, Munson, KM, Sousa, J, Germanov, Y, Bhugaloo, S, Babb, D, Wang, F. 2019. Distribution and impacts of microplastic incorporation within sea ice. Marine Pollution Bulletin 145: 463–473. DOI: http://dx.doi.org/10.1016/j.marpolbul.2019.06.029.
Golden, KM, Eicken, H, Heaton, AL, Miner, J, Pringle, DJ, Zhu, J. 2007. Thermal evolution of permeability and microstructure in sea ice. Geophysical Research Letters 34(L16501). DOI: http://dx.doi.org/10.1029/2007GL030447.
Gran, G. 1952. Determination of the equivalence point in potentiometric titration. Part II. Analyst 77: 661–671. DOI: http://dx.doi.org/10.1039/an95277 00661.
Granskog, MA, Kaartokallio, H, Kuosa, H, Thomas, DN, Vainio, J. 2006a. Sea ice in the Baltic Sea—A review. Estuarine, Coastal Shelf Science 70(1): 145–160. DOI: http://dx.doi.org/10.1016/j.ecss.2006.06. 001.
Granskog, MA, Martma, TA, Vaikmäe, RA. 2003. Development, structure and composition of land-fast sea ice in the northern Baltic Sea. Journal of Glaciology 49(164): 139–148. DOI: http://dx.doi.org/10.3189/ 172756503781830872.
Granskog, MA, Uusikivi, J, Blanco Sequeiros, A, Sonninen, E. 2006b. Relation of ice growth rate to salt segregation during freezing of low-salinity sea water (Bothnian Bay, Baltic Sea). Annals of Glaciology 44(1), 134–138. DOI: http://dx.doi.org/10.3189/ 172756406781811259.
Granskog, MA, Virkkunen, K, Thomas, DN, Ehn, J, Kola, H, Martma, T. 2004. Chemical properties of brackish water ice in the Bothnian Bay, the Baltic Sea. Journal of Glaciology 50(169): 292–302. DOI: http://dx.doi.org/10.3189/172756504781830079.
Grasshoff, K, Ehrhardt, M, Kremling, K eds. 1983. Methods of seawater analysis. Weinheim, Germany: Verlag Chemie.
Heeschen, KU, Collier, RW, de Angelis, MA, Suess, E, Rehder, G, Linke, P, Klinkhammer, GP. 2005. Methane sources, distributions, and fluxes from cold vent sites at Hydrate Ridge, Cascadia margin. Global Biogeochemical Cycles 19(2). DOI: http://dx.doi.org/10.1029/2004gb002266.
Hjalmarsson, S, Wesslander, K, Anderson, LG, Omstedt, A, Perttilä, M, Mintrop, L. 2008. Distribution, long-term development and mass balance calculation of total alkalinity in the Baltic Sea. Continental Shelf Research 28(4): 593–601. DOI: http://dx.doi.org/10.1016/j.csr.2007.11.010.
Hu, YB, Wang, F, Boone, W, Barber, D, Rysgaard, S. 2018. Assessment and improvement of the sea ice processing for dissolved inorganic carbon analysis. Limnology and Oceanography: Methods 16(2): 83–91. DOI: http://dx.doi.org/10.1002/lom3.10229.
Humborg, C, Geibel, MC, Sun, X, McCrackin, M, Mörth, CM, Stranne, C, Jakobsson, M, Gustafsson, B, Sokolov, A, Norkko, A, Norkko, J. 2019. High emissions of carbon dioxide and methane from the coastal Baltic Sea at the end of a summer heat wave. Frontiers in Marine Science 6. DOI: http://dx.doi.org/10.3389/fmars.2019.00493.
Kaartokallio, H. 2001. Evidence for active microbial nitrogen transformations in sea ice (Gulf of Bothnia, Baltic Sea) in midwinter. Polar Biology 24(1): 21–28. DOI: http://dx.doi.org/10.1007/s003000000169.
Kaartokallio, H. 2004. Food web components, and physical and chemical properties of Baltic Sea ice. Marine Ecology Progress Series 273: 49–63. DOI: http://dx.doi.org/10.3354/meps273049.
Karl, DM, Beversdorf, L, Björkman, KM, Church, MJ, Martinez, A, Delong, EF. 2008. Aerobic production of methane in the sea. Nature Geosciences 1(7): 473–478. DOI: http://dx.doi.org/10.1038/ ngeo234.
Kawamura, T, Shirasawa, K, Ishikawa, N, Lindfors, A, Rasmus, K, Granskog, MA, Ehn, J, Leppäranta, M, Martha, T, Vaikmäe, R. 2001. Time-series observations of the structure and properties of brackish ice in the Gulf of Finland. Annals of Glaciology 33: 1–4. DOI: http://dx.doi.org/10.3189/17275640 1781818950.
Kitidis, V, Upstill-Goddard, RC, Anderson, LG. 2010. Methane and nitrous oxide in surface water along the North-West Passage, Arctic Ocean. Marine Chemistry 121(1): 80–86. DOI: http://dx.doi.org/10.1016/j.marchem.2010.03.006.
Knittel, K, Boetius, A. 2009. Anaerobic oxidation of methane: Progress with an unknown process. Annual Review of Microbiology 63: 311–334. DOI: http://dx.doi.org/10.1146/annurev.micro.61.080706.093130.
Kuosa, H, Kaartokallio, H. 2006. Experimental evidence on nutrient and substrate limitation of Baltic Sea sea-ice algae and bacteria. Hydrobiologia 554(1): 1–10. DOI: http://dx.doi.org/10.1007/s10750-005-1001-z.
Kvenvolden, KA, Lilley, MD, Lorenson, TD, Barnes, PW, McLaughlin, E. 1993. The Beaufort Sea continental shelf as a seasonal source of atmospheric methane. Geophysical Research Letters 20(22): 2459–2462. DOI: http://dx.doi.org/10.1029/93gl02727.
Lannuzel, D, Tedesco, L, van Leeuwe, M, Campbell, K, Flores, H, Delille, B, Miller, L, Stefels, J, Assmy, P, Bowman, J, Brown, K, Castellani, G, Chierici, M, Crabeck, O, Damm, E, Else, B, Fransson, A, Fripiat, F, Geilfus, NX, Jacques C, Jones, E, Kaartokallio, H, Kotovitch, M, Meiners, K, Moreau, S, Nomura, D, Peeken, I, Rintala, JM, Steiner, N, Tison, JL, Vancoppenolle, M, Van der Linden, F, Vichi, M, Wongpan, P. 2020. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nature Climate Change 10(11): 983–992. DOI: http://dx.doi.org/10.1038/s41558-020-00940-4.
Leppäranta, M, Manninen, T. 1988. The brine and gas content of sea ice with attention to low salinities and high temperatures. Finnish Institute Marine Research Internal Report 88: 2.
Löffler, A, Schneider, B, Perttilä, M, Rehder, G. 2012. Air–sea CO2 exchange in the Gulf of Bothnia, Baltic Sea. Continental Shelf Research 37: 46–56. DOI: http://dx.doi.org/10.1016/j.csr.2012.02.002.
Myllykangas, JP, Hietanen, S, Jilbert, T. 2021. Legacy effects of eutrophication on modern methane dynamics in a boreal estuary. Estuaries and Coasts 43(2): 189–206. DOI: http://dx.doi.org/.1007/ s12237-019-00677-0.
Op den Camp, HJM, Islam, T, Stott, MB, Harhangi, HR, Hynes, A, Schouten, S, Jetten, MSM, Birkeland, NK, Pol, A, Dunfield, PF. 2009. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environmental Microbiology Reports 1(5): 293–306. DOI: http://dx.doi.org/10.1111/j.1758-2229.2009.00022.x.
Papadimitriou, S, Kennedy, H, Kennedy, DP, Thomas, DN. 2013. Ikaite solubility in seawater-derived brines at 1 atm and sub-zero temperatures to 265 K. Geochemica et Cosmochimica Acta 109(15). DOI: http://dx.doi.org/10.1016/j.gca.2013.01.044.
Parmentier, FJW, Christensen, TR, Rysgaard, S, Bendtsen, J, Glud, RN, Else, B, van Huissteden, J, Sachs, T, Vonk, JE, Sejr, MK. 2017. A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere. Ambio 46(1): 53–69. DOI: http://dx.doi.org/10.1007/s13280-016-0872-8.
Pomeroy, L, Wiebe, W. 2001. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquatic Microbial Ecology 23(2): 187–204. DOI: http://dx.doi.org/10.3354/ame023187.
Randall, K, Scarratt, M, Levasseur, M, Michaud, S, Xie, H, Gosselin, M. 2012. First measurements of nitrous oxide in Arctic sea ice. Journal of Geophysical Research: Oceans 117(C00G15). DOI: http://dx.doi.org/doi:10.1029/2011JC007340.
Riedel, A, Michel, C, Gosselin, M. 2007. Grazing of large-sized bacteria by sea-ice heterotrophic protists on the Mackenzie Shelf during the winter-spring transition. Aquatic Microbial Ecology 50(1): 25–38. DOI: http://dx.doi.org/10.3354/ame01155.
Rysgaard, S, Bendtsen, J, Delille, B, Dieckmann, GS, Glud, RN, Kennedy, H, Mortensen, J, Papadimitriou, S, Thomas, DN, Tison, JL. 2011. Sea ice contribution to the air-sea CO2 exchange in the Arctic and Southern Oceans. Tellus Series B: Chemical and Physical Meteorology 63(5): 823–830. DOI: http://dx.doi.org/10.1111/j.1600-0889.2011.00571.x.
Rysgaard, S, Bendtsen, J, Pedersen, LT, Ramlov, H, Glud, RN. 2009. Increased CO2 uptake due to sea ice growth and decay in the Nordic Seas. Journal of Geophysical Research: Oceans 114(C09011). DOI: http://dx.doi.org/10.1029/2008JC005088.
Rysgaard, S, Glud, RN, Sejr, MK, Bendtsen, J, Christensen, PB. 2007. Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas. Journal of Geophysical Research: Oceans 112: C03016. DOI: http://dx.doi.org/10.1029/2006JC 003572.
Rysgaard, S, Søgaard, DH, Cooper, M, Pućko, M, Lennert, K, Papakyriakou, TN, Wang, F, Geilfus, NX, Glud, RN, Ehn, J, McGinnis, DF, Attard, K, Sievers, J, Deming, JW, Barber, D. 2013. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics. The Cryosphere 7(2): 707–718. DOI: http://dx.doi.org/10.5194/tc-7-707-2013.
Schmale, O, Schneider von Deimling, J, Gülzow, W, Nausch, G, Waniek, JJ, Rehder, G. 2010. Distribution of methane in the water column of the Baltic Sea. Geophysical Research Letters 37(12). DOI: http://dx.doi.org/10.1029/2010GL043115.
Schneider, B. 2011. The CO2 system of the Baltic Sea: Biogeochemical control and impact of anthropogenic CO2, in Schernewski, G, Hofstede, J, Neumann, T ed., Global change and Baltic coastal zones. The Netherlands: Springer: 33–49. DOI: http://dx.doi.org/10.1007/978-94-007-0400-8_3.
Shakhova, N, Semiletov, I, Leifer, I, Salyuk, A, Rekant, P, Kosmach, D. 2010. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. Journal of Geophysical Research: Oceans 115(C8). DOI: http://dx.doi.org/10.1029/ 2009JC005602.
Silvennoinen, H, Liikanen, A, Rintala, J, Martikainen, PJ. 2008. Greenhouse gas fluxes from the eutrophic Temmesjoki river and its estuary in the Liminganlahti Bay (the Baltic Sea). Biogeochemistry 90(2): 193–208. DOI: http://dx.doi.org/10.1007/s10533-008-9244-1.
Tison, JL, Schwegmann, S, Dieckmann, G, Rintala, JM, Meyer, H, Moreau, S, Vancoppenolle, M, Nomura, D, Engberg, S, Blomster, LJ, Hendricks, S, Uhlig, C, Luhtanen, AM, de jong, J, Janssens, J, Carnat, G, Zhou, J, Delille, B. 2017. Biogeochemical impact of snow cover and cyclonic intrusions on the winter Weddell Sea ice pack. Journal of Geophysical Research: Oceans 122(12): 9548–9571. DOI: http://dx.doi.org/10.1002/2017JC013288.
Tušer, M, Picek, T, Sajdlová, Z, Jůza, T, Muška, M, Frouzová, J. 2017. Seasonal and spatial dynamics of gas ebullition in a temperate water-storage reservoir. Water Resources Research 53(10): 8266–8276. DOI: http://dx.doi.org/10.1002/2017WR020694.
Tyrrell, T, Schneider, B, Charalampopoulou, A, Riebesell, U. 2008. Coccolithophores and calcite saturation state in the Baltic and Black Seas. Biogeosciences 5(2): 485–494. DOI: http://dx.doi.org/10.5194/bg-5-485-2008.
Van der Linden, FC, Tison, JL, Champenois, W, Moreau, S, Carnat, G, Kotovitch, M, Fripiat, F, Deman, F, Roukaerts, A, Dehairs, F, Wauthy, S, Lourenço, A, Vivier, F, Haskell, T, Delille, B. 2020. Sea ice CO2 dynamics across seasons: Impact of processes at the interfaces. Journal of Geophysical Research: Oceans 125(6). DOI: http://dx.doi.org/10.1029/2019JC015807.
Verdugo, J, Damm, E, Snoeijs, P, Díez, B, Farías, L. 2016. Climate relevant trace gases (N2O and CH4) in the Eurasian Basin (Arctic Ocean). Deep Sea Research Part I: Oceanographic Research Papers 117, 84–94. DOI: http://dx.doi.org/10.1016/j.dsr.2016.08.016.
Vihma, T, Haapala, J. 2015. Geophysics of sea ice in the Baltic Sea: A review. Progress in Oceanography 80(3–4), 129–148. DOI: http://dx.doi.org/10.1016/j.pocean.2009.02.002.
Weiss, RF, Price, BA. 1980. Nitrous oxide solubility in water and seawater. Marine Chemistry 8: 347–359. DOI: http://dx.doi.org/10.1016/0304-4203(80)90024-9.
Wiesenburg, DA, Guinasso, NL. 1979. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. Journal of Chemical and Engineering Data 24(4): 356–360. DOI: http://dx.doi.org/10.1021/je60083a006.
Wilkinson, J, Maeck, A, Alshboul, Z, Lorke, A. 2015. Continuous seasonal river ebullition measurements linked to sediment methane formation. Environmental Science and Technology 49(22): 13121–13129. DOI: http://dx.doi.org/10.1021/acs. est.5b01525.
Zhou, JY, Delille, B, Eicken, H, Vancoppenolle, M, Brabant, F, Carnat, G, Geilfus, NX, Papakyriakou, T, Heinesch, B, Tison, JL. 2013. Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): Insights on brine and gas dynamics across seasons. Journal of Geophysical Research: Oceans 118(6): 3172–3189. DOI: http://dx.doi.org/10. 1002/jgrc.20232.
Zhou, JY, Tison, JL, Carnat, G, Geilfus, NX, Delille, B. 2014. Physical controls on the storage of methane in landfast sea ice. The Cryosphere 8(3): 1019–1029. DOI: http://dx.doi.org/10.5194/tc-8-1019-2014.