[en] Gravitational microlensing[SUP]1[/SUP] is a powerful technique for measuring the mass of isolated and faint or non-luminous objects in the Milky Way[SUP]2,3[/SUP]. In most cases, however, additional observations to the photometric light curve are required to measure accurately the mass of the microlens. Long-baseline optical/infrared interferometry provides a new and efficient way to deliver such independent constraints[SUP]4-7[/SUP], as demonstrated recently by first interferometric observations in microlensing event TCP J05074264+2447555 (`Kojima-1')[SUP]8[/SUP]. Here we report real-time observations of gravitationally lensed arcs in rotation around a microlens, Gaia19bld[SUP]9[/SUP], made with the PIONIER instrument[SUP]10[/SUP] at the Very Large Telescope Interferometer. Our data allowed us to determine the angular separation and length of the arcs, as well as their rotation rate. Combining these measurements with ground-based photometric data enabled the determination of the microlens mass, M = 1.147 ± 0.029 M[SUB]⊙[/SUB], to a very high accuracy. We anticipate interferometric microlensing to play an important future role in the mass and distance determination of isolated stellar-mass black holes[SUP]11-13[/SUP] in the Galaxy, which cannot be addressed by any other technique.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Cassan, Arnaud; Institut d'Astrophysique de Paris, UMR 7095, Sorbonne Université and CNRS, Paris, France
Ranc, Clément; Institut d'Astrophysique de Paris, UMR 7095, Sorbonne Université and CNRS, Paris, France ; Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD, USA
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > PSILab
Wyrzykowski, Łukasz; Astronomical Observatory, University of Warsaw, Warszawa, Poland
Rybicki, Krzysztof A.; Astronomical Observatory, University of Warsaw, Warszawa, Poland
Bachelet, Étienne; Las Cumbres Observatory Global Telescope Network, Goleta, CA, USA
Le Bouquin, Jean-Baptiste; Institut de Planétologie et d'Astrophysique de Grenoble, Université Grenoble Alpes and CNRS, Grenoble, France ; Department of Astronomy, University of Michigan, Ann Arbor, MI, USA
Hundertmark, Markus; Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Heidelberg, Germany
Street, Rachel; Las Cumbres Observatory Global Telescope Network, Goleta, CA, USA
Surdej, Jean ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Tsapras, Yiannis; Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Heidelberg, Germany
Wambsganss, Joachim; Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Heidelberg, Germany
Wertz, Olivier; Space Sciences, Technologies and Astrophysics Research (STAR) Institute, University of Liège, Liège, Belgium)
Paczyński, B. Gravitational microlensing by the Galactic halo. Astrophys. J. 304, 1–5 (1986). DOI: 10.1086/164140
Gould, A. Measuring the remnant mass function of the Galactic bulge. Astrophys. J. 535, 928–931 (1999). DOI: 10.1086/308865
An, J. H. et al. First microlens mass measurement: PLANET photometry of EROS BLG-2000-5. Astrophys. J. 572, 521–539 (2002). DOI: 10.1086/340191
Delplancke, F., Górski, K. M. & Richichi, A. Resolving gravitational microlensing events with long-baseline optical interferometry. Prospects for the ESO Very Large Telescope Interferometer. Astron. Astrophys. 375, 701–710 (2001). DOI: 10.1051/0004-6361:20010783
Dalal, N. & Lane, B. F. Bringing closure to microlensing mass measurement. Astrophys. J. 589, 199–209 (2003). DOI: 10.1086/374549
Rattenbury, N. J. & Mao, S. Interferometric visibility and closure phase of microlensing events with finite source size. Mon. Not. R. Astron. Soc. 365, 792–800 (2006). DOI: 10.1111/j.1365-2966.2005.09769.x
Cassan, A. & Ranc, C. Interferometric observation of microlensing events. Mon. Not. R. Astron. Soc. 458, 2074–2079 (2016). DOI: 10.1093/mnras/stw372
Dong, S. et al. First resolution of microlensed images. Astrophys. J. 871, 70 (2019). DOI: 10.3847/1538-4357/aaeffb
Rybicki, K. A. et al. Single lens mass measurement in the high magnification microlensing event Gaia19bld located in the Galactic Disk. Astron. Astrophys. (in the press).
Le Bouquin, J.-B. et al. PIONIER: a 4-telescope visitor instrument at VLTI. Astron. Astrophys. 535, A67 (2011). DOI: 10.1051/0004-6361/201117586
Mao, S. et al. Optical Gravitational Lensing Experiment OGLE 1999 BUL 32: the longest ever microlensing event—evidence for a stellar mass black hole? Mon. Not. R. Astron. Soc. 329, 349–354 (2002). DOI: 10.1046/j.1365-8711.2002.04986.x
Bennett, D. P. et al. Gravitational microlensing events due to stellar-mass black holes. Astrophys. J. 579, 639–659 (2002). DOI: 10.1086/342225
Wyrzykowski, Ł. & Mandel, I. Constraining the masses of microlensing black holes and the mass gap with Gaia DR2. Astron. Astrophys. 636, A20 (2020). DOI: 10.1051/0004-6361/201935842
Einstein, A. Lens-like action of a star by the deviation of light in the gravitational field. Science 84, 506–507 (1936). DOI: 10.1126/science.84.2188.506
Gaudi, B. S. Microlensing surveys for exoplanets. Annu. Rev. Astron. Astrophys. 50, 411–453 (2012). DOI: 10.1146/annurev-astro-081811-125518
Calchi Novati, S. et al. Pathway to the Galactic distribution of planets: combined Spitzer and ground-based microlens parallax measurements of 21 single-lens events. Astrophys. J. 804, 20 (2015). DOI: 10.1088/0004-637X/804/1/20
Bennett, D. P., Anderson, J., Bond, I. A., Udalski, A. & Gould, A. Identification of the OGLE-2003-BLG-235/MOA-2003-BLG-53 planetary host star. Astrophys. J. 647, L171–L174 (2006). DOI: 10.1086/507585
Fukui, A. et al. Kojima-1Lb is a mildly cold Neptune around the brightest microlensing host star. Astron. J. 158, 206 (2019). DOI: 10.3847/1538-3881/ab487f
Zang, W. et al. Spitzer + VLTI-GRAVITY measure the lens mass of a nearby microlensing event. Astrophys. J. 897, 180 (2020). DOI: 10.3847/1538-4357/ab9749
Baron, F., Monnier, J. D. & Kloppenborg, B. A novel image reconstruction software for optical/infrared interferometry. Proc. SPIE 7734, 77342I (2010). DOI: 10.1117/12.857364
Gould, A. P. Resolution of the MACHO-LMC-5 puzzle: the jerk-parallax microlens degeneracy. Astrophys. J. 606, 319–325 (2004). DOI: 10.1086/382782
Bachelet, E. et al. Spectroscopic follow-up of Gaia19bld. Astron. Astrophys. (in the press).
Clesse, S. & García-Bellido, J. Seven hints for primordial black hole dark matter. Phys. Dark Univ. 22, 137–146 (2018). DOI: 10.1016/j.dark.2018.08.004
Mao, S. & Paczynski, B. Gravitational microlensing by double stars and planetary systems. Astrophys. J. Lett. 374, L37–L40 (1991). DOI: 10.1086/186066
Wyrzykowski, Ł. et al. Black hole, neutron star and white dwarf candidates from microlensing with OGLE-III. Mon. Not. R. Astron. Soc. 458, 3012–3026 (2016). DOI: 10.1093/mnras/stw426
Cassan, A. et al. One or more bound planets per Milky Way star from microlensing observations. Nature 481, 167–169 (2012). DOI: 10.1038/nature10684
Suzuki, D. et al. Microlensing results challenge the core accretion runaway growth scenario for gas giants. Astrophys. J. Lett. 869, L34 (2018). DOI: 10.3847/2041-8213/aaf577
Sumi, T. et al. Unbound or distant planetary mass population detected by gravitational microlensing. Nature 473, 349–352 (2011). DOI: 10.1038/nature10092
Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). DOI: 10.1038/nature23276
Cassan, A. Interferometric visibility of single-lens models: the thin-arcs approximation. Preprint at https://arxiv.org/abs/2109.11947.pdf (2021).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013). DOI: 10.1086/670067
Lynds, R. & Petrosian, V. Giant luminous arcs in galaxy clusters. Bull. Am. Astron. Soc. 18, 1014 (1986).
Soucail, G., Fort, B., Mellier, Y. & Picat, J. P. A blue ring-like structure in the centre of the A 370 cluster of galaxies. Astron. Astrophys. 72, L14–L16 (1987).
Gallenne, A. et al. Fundamental properties of red-clump stars from long-baseline H-band interferometry. Astron. Astrophys. 616, A68 (2018). DOI: 10.1051/0004-6361/201833341
Schaefer, H. G., Cassan, A., Gallenne, A., Roettenbacher, R. M. & Schneider, J. Interferometry in the era of time-domain astronomy. Exp. Astron. 46, 421–431 (2018). DOI: 10.1007/s10686-018-9586-1
Wiktorowicz, G. et al. Populations of stellar-mass black holes from binary systems. Astrophys. J. 885, 1–21 (2019). DOI: 10.3847/1538-4357/ab45e6
Zhu, W. et al. Toward a Galactic distribution of planets. I. Methodology and planet sensitivities of the 2015 high-cadence Spitzer microlens sample. Astron. J. 154, 210 (2017). DOI: 10.3847/1538-3881/aa8ef1