Acar E., Gürdeniz G., Savorani F., Hansen L., Olsen A., Tjønneland A., et al. (2017). Forecasting Chronic Diseases Using Data Fusion. J. Proteome Res. 16, 2435–2444. 10.1021/acs.jproteome.7b00039
Albrecht B., Voronina E., Schipke C., Peters O., Parr M. K., Díaz-Hernández M. D., et al. (2020). Pursuing Experimental Reproducibility: An Efficient Protocol for the Preparation of Cerebrospinal Fluid Samples for NMR-Based Metabolomics and Analysis of Sample Degradation. Metabolites 10, 251. 10.3390/metabo10060251
Amathieu R., Triba M. N., Nahon P., Bouchemal N., Kamoun W., Haouache H., et al. (2014). Serum 1H-NMR Metabolomic Fingerprints of Acute-On-Chronic Liver Failure in Intensive Care Unit Patients with Alcoholic Cirrhosis. PLOS ONE 9, e89230. 10.1371/journal.pone.0089230
Amiel A., Tremblay-Franco M., Gautier R., Ducheix S., Montagner A., Polizzi A., et al. (2019). Proton NMR Enables the Absolute Quantification of Aqueous Metabolites and Lipid Classes in Unique Mouse Liver Samples. Metabolites 10, 9. 10.3390/metabo10010009
Ardenkjaer-Larsen J. H., Fridlund B., Gram A., Hansson G., Hansson L., Lerche M. H., et al. (2003). Increase in Signal-To-Noise Ratio of > 10,000 Times in Liquid-State NMR. Proc. Natl. Acad. Sci. 100, 10158–10163. 10.1073/pnas.1733835100
Ardenkjaer-Larsen J. H., (2019). Hyperpolarized MR - What's up Doc? J. Magn. Reson. 306, 124–127. 10.1016/j.jmr.2019.07.017
Ashrafian H., Sounderajah V., Glen R., Ebbels T., Blaise B. J., Kalra D., et al. (2021). Metabolomics: The Stethoscope for the Twenty-First Century. Med. Princ Pract. 30, 301–310. 10.1159/000513545
Banci L., Barbieri L., Calderone V., Cantini F., Cerofolini L., Ciofi-Baffoni S., et al. (2019). Biomolecular NMR at 1.2 GHz. ArXiv191007462 Phys. Available at: http://arxiv.org/abs/1910.07462 (Accessed December 30, 2020).
Barrilero R., Gil M., Amigó N., Dias C. B., Wood L. G., Garg M. L., et al. (2018). LipSpin: A New Bioinformatics Tool for Quantitative 1H NMR Lipid Profiling. Anal. Chem. 90, 2031–2040. 10.1021/acs.analchem.7b04148
Beale D. J., Pinu F. R., Kouremenos K. A., Poojary M. M., Narayana V. K., Boughton B. A., et al. (2018). Review of Recent Developments in GC-MS Approaches to Metabolomics-Based Research. Metabolomics 14, 152. 10.1007/s11306-018-1449-2
Beckonert O., Keun H. C., Ebbels T. M. D., Bundy J., Holmes E., Lindon J. C., et al. (2007). Metabolic Profiling, Metabolomic and Metabonomic Procedures for NMR Spectroscopy of Urine, Plasma, Serum and Tissue Extracts. Nat. Protoc. 2, 2692–2703. 10.1038/nprot.2007.376
Bedia C., Cardoso P., Dalmau N., Gómez-Canela C., Gorrochategui E., et al. (2018). “Chapter Nineteen Applications of Metabolomics Analysis in Environmental Research,” in Comprehensive Analytical Chemistry Data Analysis for Omic Sciences: Methods and Applications. Editors Jaumot J., Bedia C., Tauler R., (Amsterdam: Elsevier), 533–582. 10.1016/bs.coac.2018.07.006
Beger R. D., Schmidt M. A., Kaddurah-Daouk R., (2020). Current Concepts in Pharmacometabolomics, Biomarker Discovery, and Precision Medicine. Metabolites 10, 129. 10.3390/metabo10040129
Beirnaert C., Meysman P., Vu T. N., Hermans N., Apers S., Pieters L., et al. (2018). Speaq 2.0: A Complete Workflow for High-Throughput 1D NMR Spectra Processing and Quantification. PLoS Comput. Biol. 14, e1006018. 10.1371/journal.pcbi.1006018
Bhinderwala F., Evans P., Jones K., Laws B. R., Smith T. G., Morton M., et al. (2020). Phosphorus NMR and its Application to Metabolomics. Anal. Chem. 92, 9536–9545. 10.1021/acs.analchem.0c00591
Bild D. E., Bluemke D. A., Burke G. L., Detrano R., Diez Roux A. V., Folsom A. R., et al. (2002). Multi-Ethnic Study of Atherosclerosis: Objectives and Design. Am. J. Epidemiol. 156, 871–881. 10.1093/aje/kwf113
Bingol K., Brüschweiler R., (2015a). NMR/MS Translator for the Enhanced Simultaneous Analysis of Metabolomics Mixtures by NMR Spectroscopy and Mass Spectrometry: Application to Human Urine. J. Proteome Res. 14, 2642–2648. 10.1021/acs.jproteome.5b00184
Bingol K., Brüschweiler R., (2015b). Two Elephants in the Room. Curr. Opin. Clin. Nutr. Metab. Care 18, 471–477. 10.1097/MCO.0000000000000206
Bingol K., Brüschweiler R., (2017). Knowns and Unknowns in Metabolomics Identified by Multidimensional NMR and Hybrid MS/NMR Methods. Curr. Opin. Biotechnol. 43, 17–24. 10.1016/j.copbio.2016.07.006
Bingol K., Bruschweiler-Li L., Yu C., Somogyi A., Zhang F., Brüschweiler R., (2015). Metabolomics Beyond Spectroscopic Databases: A Combined MS/NMR Strategy for the Rapid Identification of New Metabolites in Complex Mixtures. Anal. Chem. 87, 3864–3870. 10.1021/ac504633z
Boccard J., Rudaz S., (2014). Harnessing the Complexity of Metabolomic Data with Chemometrics. J. Chemom. 28, 1–9. 10.1002/cem.2567
Bornet A., Maucourt M., Deborde C., Jacob D., Milani J., Vuichoud B., et al. (2016). Highly Repeatable Dissolution Dynamic Nuclear Polarization for Heteronuclear NMR Metabolomics. Anal. Chem. 88, 6179–6183. 10.1021/acs.analchem.6b01094
Bowler R. P., Wendt C. H., Fessler M. B., Foster M. W., Kelly R. S., Lasky-Su J., et al. (2017). New Strategies and Challenges in Lung Proteomics and Metabolomics. An Official American Thoracic Society Workshop Report. Ann. ATS 14, 1721–1743. 10.1513/AnnalsATS.201710-770WS
Bruno C., Patin F., Bocca C., Nadal-Desbarats L., Bonnier F., Reynier P., et al. (2018). The Combination of Four Analytical Methods to Explore Skeletal Muscle Metabolomics: Better Coverage of Metabolic Pathways or a Marketing Argument? J. Pharm. Biomed. Anal. 148, 273–279. 10.1016/j.jpba.2017.10.013
Bruzzone C., Bizkarguenaga M., Gil-Redondo R., Diercks T., Arana E., García de Vicuña A., et al. (2020). SARS-CoV-2 Infection Dysregulates the Metabolomic and Lipidomic Profiles of Serum. iScience 23, 101645. 10.1016/j.isci.2020.101645
Castañar L., (2017). Pure Shift 1 H NMR: what Is Next? Magn. Reson. Chem. 55, 47–53. 10.1002/mrc.4545
Catapano A. L., Graham I., De Backer G., Wiklund O., Chapman M. J., Drexel H., et al. (2016). 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Atherosclerosis 253, 281–344. 10.1016/j.atherosclerosis.2016.08.018
Chan Q., Loo R. L., Ebbels T. M. D., Van Horn L., Daviglus M. L., Stamler J., et al. (2017). Metabolic Phenotyping for Discovery of Urinary Biomarkers of Diet, Xenobiotics and Blood Pressure in the INTERMAP Study: An Overview. Hypertens. Res. 40, 336–345. 10.1038/hr.2016.164
Chow W.-H., Chrisman M., Daniel C. R., Ye Y., Gomez H., Dong Q., et al. (2017). Cohort Profile: The Mexican American Mano a Mano Cohort. Int. J. Epidemiol. 46, e3. 10.1093/ije/dyv016
Ciaramelli C., Fumagalli M., Viglio S., Bardoni A. M., Piloni D., Meloni F., et al. (2017). 1H NMR to Evaluate the Metabolome of Bronchoalveolar Lavage Fluid (BALf) in Bronchiolitis Obliterans Syndrome (BOS): Toward the Development of a New Approach for Biomarker Identification. J. Proteome Res. 16, 1669–1682. 10.1021/acs.jproteome.6b01038
Clayton E., Taylor S., Wright B., Wilson I. D., (1998). The Application of High Performance Liquid Chromatography, Coupled to Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry (HPLC-NMR-MS), to the Characterisation of Ibuprofen Metabolites from Human Urine. Chromatographia 47, 264–270. 10.1007/BF02466530
Clendinen C. S., Lee-McMullen B., Williams C. M., Stupp G. S., Vandenborne K., Hahn D. A., et al. (2014). 13C NMR Metabolomics: Applications at Natural Abundance. Anal. Chem. 86, 9242–9250. 10.1021/ac502346h
Coman C., Solari F. A., Hentschel A., Sickmann A., Zahedi R. P., Ahrends R., (2016). Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX): A Combinatorial Multimolecular Omics Approach for Systems Biology. Mol. Cell Proteom. 15, 1435–1466. 10.1074/mcp.M115.053702
Crockford D. J., Holmes E., Lindon J. C., Plumb R. S., Zirah S., Bruce S. J., et al. (2006). Statistical Heterospectroscopy, an Approach to the Integrated Analysis of NMR and UPLC-MS Data Sets: Application in Metabonomic Toxicology Studies. Anal. Chem. 78, 363–371. 10.1021/ac051444m
Crockford D. J., Maher A. D., Ahmadi K. R., Barrett A., Plumb R. S., Wilson I. D., et al. (2008). 1H NMR and UPLC-MSE Statistical Heterospectroscopy: Characterization of Drug Metabolites (Xenometabolome) in Epidemiological Studies. Anal. Chem. 80, 6835–6844. 10.1021/ac801075m
Crown S. B., Antoniewicz M. R., (2013). Publishing 13C Metabolic Flux Analysis Studies: A Review and Future Perspectives. Metab. Eng. 20, 42–48. 10.1016/j.ymben.2013.08.005
Cui L., Lu H., Lee Y. H., (2018). Challenges and Emergent Solutions for LC-MS/MS Based Untargeted Metabolomics in Diseases. Mass. Spec. Rev. 37, 772–792. 10.1002/mas.21562
Cuperlovic-Culf M., Culf A. S., (2016). Applied Metabolomics in Drug Discovery. Expert Opin. Drug Discov. 11, 759–770. 10.1080/17460441.2016.1195365
Curtarello M., Tognon M., Venturoli C., Silic-Benussi M., Grassi A., Verza M., et al. (2019). Rewiring of Lipid Metabolism and Storage in Ovarian Cancer Cells after Anti-VEGF Therapy. Cells 8, 1601. 10.3390/cells8121601
Dear G. J., Ayrton J., Plumb R., Sweatman B. C., Ismail I. M., Fraser I. J., et al. (1998). A Rapid and Efficient Approach to Metabolite Identification Using Nuclear Magnetic Resonance Spectroscopy, Liquid Chromatography/mass Spectrometry and Liquid Chromatography/nuclear Magnetic Resonance Spectroscopy/sequential Mass Spectrometry. Rapid Commun. Mass. Spectrom. 12, 2023–2030.
Debik J., Euceda L. R., Lundgren S., Gythfeldt H. v. d. L., Garred O., Borgen E., et al. (2019). Assessing Treatment Response and Prognosis by Serum and Tissue Metabolomics in Breast Cancer Patients. J. Proteome Res. 18, 3649–3660. 10.1021/acs.jproteome.9b00316
Deelen J., Kettunen J., Fischer K., van der Spek A., Trompet S., Kastenmüller G., et al. (2019). A Metabolic Profile of All-Cause Mortality Risk Identified in an Observational Study of 44,168 Individuals. Nat. Commun. 10, 3346. 10.1038/s41467-019-11311-9
Deng L., Gu H., Zhu J., Nagana Gowda G. A., Djukovic D., Chiorean E. G., et al. (2016). Combining NMR and LC/MS Using Backward Variable Elimination: Metabolomics Analysis of Colorectal Cancer, Polyps, and Healthy Controls. Anal. Chem. 88, 7975–7983. 10.1021/acs.analchem.6b00885
Dennis E. A., (2009). Lipidomics Joins the Omics Evolution. Proc. Natl. Acad. Sci. 106, 2089–2090. 10.1073/pnas.0812636106
Dey A., Charrier B., Martineau E., Deborde C., Gandriau E., Moing A., et al. (2020). Hyperpolarized NMR Metabolomics at Natural 13C Abundance. Anal. Chem. 92, 14867–14871. 10.1021/acs.analchem.0c03510
Di Sanzo M., Cipolloni L., Borro M., La Russa R., Santurro A., Scopetti M., et al. (2017). Clinical Applications of Personalized Medicine: A New Paradigm and Challenge. Curr. Pharm. Biotechnol. 18, 194–203. 10.2174/1389201018666170224105600
Doeswijk T. G., Smilde A. K., Hageman J. A., Westerhuis J. A., van Eeuwijk F. A., (2011). On the Increase of Predictive Performance with High-Level Data Fusion. Analytica Chim. Acta 705, 41–47. 10.1016/j.aca.2011.03.025
Dona A. C., Kyriakides M., Scott F., Shephard E. A., Varshavi D., Veselkov K., et al. (2016). A Guide to the Identification of Metabolites in NMR-Based Metabonomics/metabolomics Experiments. Comput. Struct. Biotechnol. J. 14, 135–153. 10.1016/j.csbj.2016.02.005
Du J., Su Y., Qian C., Yuan D., Miao K., Lee D., et al. (2020). Raman-guided Subcellular Pharmaco-Metabolomics for Metastatic Melanoma Cells. Nat. Commun. 11, 4830. 10.1038/s41467-020-18376-x
Duarte D., Castro B., Pereira J. L., Marques J. F., Costa A. L., Gil A. M., (2020). Evaluation of Saliva Stability for NMR Metabolomics: Collection and Handling Protocols. Metabolites 10, 515. 10.3390/metabo10120515
Duckett S. B., Mewis R. E., (2013). “Improving NMR and MRI Sensitivity with Parahydrogen,” in Hyperpolarization Methods in NMR Spectroscopy. Editor Kuhn L. T., (Berlin, Heidelberg: Springer Berlin Heidelberg), 75–103.
Dumez J.-N., Milani J., Vuichoud B., Bornet A., Lalande-Martin J., Tea I., et al. (2015). Hyperpolarized NMR of Plant and Cancer Cell Extracts at Natural Abundance. Analyst 140, 5860–5863. 10.1039/c5an01203a
Elemento O., (2020). The Future of Precision Medicine: towards a More Predictive Personalized Medicine. Emerg. Top. Life Sci. 4, 175–177. 10.1042/ETLS20190197
Elliott P., Vergnaud A.-C., Singh D., Neasham D., Spear J., Heard A., (2014). The Airwave Health Monitoring Study of Police Officers and Staff in Great Britain: Rationale, Design and Methods. Environ. Res. 134, 280–285. 10.1016/j.envres.2014.07.025
Emwas A.-H., Roy R., McKay R. T., Ryan D., Brennan L., Tenori L., et al. (2016). Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis. J. Proteome Res. 15, 360–373. 10.1021/acs.jproteome.5b00885
Emwas A.-H., Roy R., McKay R. T., Tenori L., Saccenti E., Gowda G. A. N., et al. (2019). NMR Spectroscopy for Metabolomics Research. Metabolites 9, 123. 10.3390/metabo9070123
Everett J. R., (2017). NMR-based Pharmacometabonomics: A New Paradigm for Personalised or Precision Medicine. Prog. Nucl. Magn. Reson. Spectrosc. 102-103, 1–14. 10.1016/j.pnmrs.2017.04.003
Fan T. W., Lane A. N., Higashi R. M., Farag M. A., Gao H., Bousamra M., et al. (2009). Altered Regulation of Metabolic Pathways in Human Lung Cancer Discerned by 13C Stable Isotope-Resolved Metabolomics (SIRM). Mol. Cancer 8, 41. 10.1186/1476-4598-8-41
Fan T. W.-M., Lorkiewicz P. K., Sellers K., Moseley H. N. B., Higashi R. M., Lane A. N., (2012). Stable Isotope-Resolved Metabolomics and Applications for Drug Development. Pharmacol. Ther. 133, 366–391. 10.1016/j.pharmthera.2011.12.007
Féraud B., Govaerts B., Verleysen M., de Tullio P., (2015). Statistical Treatment of 2D NMR COSY Spectra in Metabolomics: Data Preparation, Clustering-Based Evaluation of the Metabolomic Informative Content and Comparison with 1H-NMR. Metabolomics 11, 1756–1768. 10.1007/s11306-015-0830-7
Féraud B., Leenders J., Martineau E., Giraudeau P., Govaerts B., de Tullio P., (2019). Two Data Pre-processing Workflows to Facilitate the Discovery of Biomarkers by 2D NMR Metabolomics. Metabolomics 15, 63. 10.1007/s11306-019-1524-3
Féraud B., Martineau E., Leenders J., Govaerts B., de Tullio P., Giraudeau P., (2020). Combining Rapid 2D NMR Experiments with Novel Pre-processing Workflows and MIC Quality Measures for Metabolomics. Metabolomics 16, 42. 10.1007/s11306-020-01662-6
Fei Q., Wang D., Jasbi P., Zhang P., Nagana Gowda G. A., Raftery D., et al. (2019). Combining NMR and MS with Chemical Derivatization for Absolute Quantification with Reduced Matrix Effects. Anal. Chem. 91, 4055–4062. 10.1021/acs.analchem.8b05611
Finch G., Yilmaz A., Utz M., (2016). An Optimised Detector for In-Situ High-Resolution NMR in Microfluidic Devices. J. Magn. Reson. 262, 73–80. 10.1016/j.jmr.2015.11.011
Frédérich M., Pirotte B., Fillet M., de Tullio P., (2016). Metabolomics as a Challenging Approach for Medicinal Chemistry and Personalized Medicine. J. Med. Chem. 59, 8649–8666. 10.1021/acs.jmedchem.5b01335
Gebretsadik T., Linert W., Thomas M., Berhanu T., Frew R., (2019). LC-NMR for Natural Products Analysis: A Journey from an Academic Curiosity to a Robust Analytical Tool. Sci 1, 31. 10.3390/sci1010031
Gil M., Samino S., Barrilero R., Correig X., (2019). “Lipid Profiling Using 1H NMR Spectroscopy,” in NMR-Based Metabolomics: Methods and Protocols Methods in Molecular Biology. Editors Gowda G. A. N., Raftery D., (New York, NY: Springer), 35–47. 10.1007/978-1-4939-9690-2_3
Giraudeau P., (2020). NMR-based Metabolomics and Fluxomics: Developments and Future Prospects. Analyst 145, 2457–2472. 10.1039/D0AN00142B
Giskeødegård G. F., Andreassen T., Bertilsson H., Tessem M.-B., Bathen T. F., (2019). The Effect of Sampling Procedures and Day-To-Day Variations in Metabolomics Studies of Biofluids. Analytica Chim. Acta 1081, 93–102. 10.1016/j.aca.2019.07.026
Gogiashvili M., Nowacki J., Hergenröder R., Hengstler J. G., Lambert J., Edlund K., (2019). HR-MAS NMR Based Quantitative Metabolomics in Breast Cancer. Metabolites 9, 19. 10.3390/metabo9020019
González-Ruiz V., Schvartz D., Sandström J., Pezzatti J., Jeanneret F., Tonoli D., et al. (2019). An Integrative Multi-Omics Workflow to Address Multifactorial Toxicology Experiments. Metabolites 9, 79. 10.3390/metabo9040079
Gouilleux B., Marchand J., Charrier B., Remaud G. S., Giraudeau P., (2018). High-throughput Authentication of Edible Oils with Benchtop Ultrafast 2D NMR. Food Chem. 244, 153–158. 10.1016/j.foodchem.2017.10.016
Gouilleux B., Farjon J., Giraudeau P., (2020). Gradient-based Pulse Sequences for Benchtop NMR Spectroscopy. J. Magn. Reson. 319, 106810. 10.1016/j.jmr.2020.106810
Goulitquer S., Croyal M., Lalande J., Royer A.-L., Guitton Y., Arzur D., et al. (2018). Consequences of Blunting the Mevalonate Pathway in Cancer Identified by a Pluri-Omics Approach. Cell Death Dis. 9, 1–12. 10.1038/s41419-018-0761-0
Gowda G. A. N., Djukovic D., (2014). Overview of Mass Spectrometry-Based Metabolomics: Opportunities and Challenges. Methods Mol. Biol. 1198, 3–12. 10.1007/978-1-4939-1258-2_1
Gross R. W., Han X., (2011). Lipidomics at the Interface of Structure and Function in Systems Biology. Chem. Biol. 18, 284–291. 10.1016/j.chembiol.2011.01.014
Gu H., Pan Z., Xi B., Asiago V., Musselman B., Raftery D., (2011). Principal Component Directed Partial Least Squares Analysis for Combining Nuclear Magnetic Resonance and Mass Spectrometry Data in Metabolomics: Application to the Detection of Breast Cancer. Analytica Chim. Acta 686, 57–63. 10.1016/j.aca.2010.11.040
Guo R., Chen Y., Borgard H., Jijiwa M., Nasu M., He M., et al. (2020). The Function and Mechanism of Lipid Molecules and Their Roles in the Diagnosis and Prognosis of Breast Cancer. Molecules 25, 4864. 10.3390/molecules25204864
Hao J., Astle W., De Iorio M., Ebbels T. M. D., (2012). BATMAN--an R Package for the Automated Quantification of Metabolites from Nuclear Magnetic Resonance Spectra Using a Bayesian Model. Bioinformatics 28, 2088–2090. 10.1093/bioinformatics/bts308
Hermkens N. K. J., Eshuis N., van Weerdenburg B. J. A., Feiters M. C., Rutjes F. P. J. T., Wijmenga S. S., et al. (2016). NMR-Based Chemosensing via P-H2 Hyperpolarization: Application to Natural Extracts. Anal. Chem. 88, 3406–3412. 10.1021/acs.analchem.6b00184
Holzgrabe U., Deubner R., Schollmayer C., Waibel B., (2005). Quantitative NMR Spectroscopy-Applications in Drug Analysis. J. Pharm. Biomed. Anal. 38, 806–812. 10.1016/j.jpba.2005.01.050
Hu R., Li T., Yang Y., Tian Y., Zhang L., (2021). “NMR-Based Metabolomics in Cancer Research,” in Cancer Metabolomics: Methods And Applications Advances in Experimental Medicine and Biology. Editor Hu S., (Cham: Springer International Publishing), 201–218. 10.1007/978-3-030-51652-9_14
Huart J., Leenders J., Taminiau B., Descy J., Saint-Remy A., Daube G., et al. (2019). Gut Microbiota and Fecal Levels of Short-Chain Fatty Acids Differ upon 24-Hour Blood Pressure Levels in Men. Hypertension 74, 1005–1013. 10.1161/HYPERTENSIONAHA.118.12588
Huart J., Cirillo A., Saint-Remy A., Krzesinski J.-M., de Tullio P., Jouret F., (2021a). The Faecal Abundance of Short Chain Fatty Acids Is Increased in Men with a Non-dipping Blood Pressure Profile. Acta Cardiol. 76, 1–4. 10.1080/00015385.2021.1901020
Huart J., Cirillo A., Taminiau B., Descy J., Saint-Remy A., Daube G., et al. (2021b). Human Stool Metabolome Differs upon 24 H Blood Pressure Levels and Blood Pressure Dipping Status: A Prospective Longitudinal Study. Metabolites 11, 282. 10.3390/metabo11050282
Izquierdo-Garcia J. L., Comella-del-Barrio P., Campos-Olivas R., Villar-Hernández R., Prat-Aymerich C., De Souza-Galvão M. L., et al. (2020). Discovery and Validation of an NMR-Based Metabolomic Profile in Urine as TB Biomarker. Sci. Rep. 10, 22317. 10.1038/s41598-020-78999-4
Jacob M., Lopata A. L., Dasouki M., Abdel Rahman A. M., (2019). Metabolomics toward Personalized Medicine. Mass. Spec. Rev. 38, 221–238. 10.1002/mas.21548
Ji X., Bornet A., Vuichoud B., Milani J., Gajan D., Rossini A. J., et al. (2017). Transportable Hyperpolarized Metabolites. Nat. Commun. 8, 13975. 10.1038/ncomms13975
Jiménez B., Holmes E., Heude C., Tolson R. F., Harvey N., Lodge S. L., et al. (2018). Quantitative Lipoprotein Subclass and Low Molecular Weight Metabolite Analysis in Human Serum and Plasma by 1H NMR Spectroscopy in a Multilaboratory Trial. Anal. Chem. 90, 11962–11971. 10.1021/acs.analchem.8b02412
Jobard E., Trédan O., Bachelot T., Vigneron A. M., Aït-Oukhatar C. M., Arnedos M., et al. (2017). Longitudinal Serum Metabolomics Evaluation of Trastuzumab and Everolimus Combination as Pre-operative Treatment for HER-2 Positive Breast Cancer Patients. Oncotarget 8, 83570–83584. 10.18632/oncotarget.18784
Johnson H., Puppa M., Merwe M., Tipirneni‐Sajja A., (2021). CRAFT for NMR Lipidomics: Targeting Lipid Metabolism in Leucine‐supplemented Tumor‐bearing Mice. Magn. Reson. Chem. 59, 138–146. 10.1002/mrc.5092
Jurowski K., Kochan K., Walczak J., Barańska M., Piekoszewski W., Buszewski B., (2017). Analytical Techniques in Lipidomics: State of the Art. Crit. Rev. Anal. Chem. 47, 418–437. 10.1080/10408347.2017.1310613
Karaman İ., Nørskov N. P., Yde C. C., Hedemann M. S., Bach Knudsen K. E., Kohler A., (2015). Sparse Multi-Block PLSR for Biomarker Discovery when Integrating Data from LC-MS and NMR Metabolomics. Metabolomics 11, 367–379. 10.1007/s11306-014-0698-y
Kelly R. S., Giorgio R. T., Chawes B. L., Palacios N. I., Gray K. J., Mirzakhani H., et al. (2017). Applications of Metabolomics in the Study and Management of Preeclampsia: a Review of the Literature. Metabolomics 13, 86. 10.1007/s11306-017-1225-8
Khakimov B., Mobaraki N., Trimigno A., Aru V., Engelsen S. B., (2020). Signature Mapping (SigMa): An Efficient Approach for Processing Complex Human Urine 1H NMR Metabolomics Data. Analytica Chim. Acta 1108, 142–151. 10.1016/j.aca.2020.02.025
Kim H. K., Kostidis S., Choi Y. H., (2018). NMR Analysis of Fecal Samples. Methods Mol. Biol. 1730, 317–328. 10.1007/978-1-4939-7592-1_24
Kohler I., Verhoeven A., Derks R. J., Giera M., (2016). Analytical Pitfalls and Challenges in Clinical Metabolomics. Bioanalysis 8, 1509–1532. 10.4155/bio-2016-0090
Kohler I., Hankemeier T., van der Graaf P. H., Knibbe C. A. J., van Hasselt J. G. C., (2017). Integrating Clinical Metabolomics-Based Biomarker Discovery and Clinical Pharmacology to Enable Precision Medicine. Eur. J. Pharm. Sci. 109, S15–S21. 10.1016/j.ejps.2017.05.018
Kosmides A. K., Kamisoglu K., Calvano S. E., Corbett S. A., Androulakis I. P., (2013). Metabolomic Fingerprinting: Challenges and Opportunities. Crit. Rev. Biomed. Eng. 41, 205–221. 10.1615/critrevbiomedeng.2013007736
Kostara C. E., Tsimihodimos V., Elisaf M. S., Bairaktari E. T., (2017). NMR-Based Lipid Profiling of High Density Lipoprotein Particles in Healthy Subjects with Low, Normal, and Elevated HDL-Cholesterol. J. Proteome Res. 16, 1605–1616. 10.1021/acs.jproteome.6b00975
Kostidis S., Addie R. D., Morreau H., Mayboroda O. A., Giera M., (2017). Quantitative NMR Analysis of Intra- and Extracellular Metabolism of Mammalian Cells: A Tutorial. Analytica Chim. Acta 980, 1–24. 10.1016/j.aca.2017.05.011
Kovacs H., Moskau D., Spraul M., (2005). Cryogenically Cooled Probes-A Leap in NMR Technology. Prog. Nucl. Magn. Reson. Spectrosc. 46, 131–155. 10.1016/j.pnmrs.2005.03.001
Kumar R., Bohra A., Pandey A. K., Pandey M. K., Kumar A., (2017). Metabolomics for Plant Improvement: Status and Prospects. Front. Plant Sci. 8, 1302. 10.3389/fpls.2017.01302
Küster S. K., Danieli E., Blümich B., Casanova F., (2011). High-resolution NMR Spectroscopy under the Fume Hood. Phys. Chem. Chem. Phys. 13, 13172–13176. 10.1039/c1cp21180c
Labaki W. W., Gu T., Murray S., Curtis J. L., Yeomans L., Bowler R. P., et al. (2019). Serum Amino Acid Concentrations and Clinical Outcomes in Smokers: SPIROMICS Metabolomics Study. Sci. Rep. 9, 11367. 10.1038/s41598-019-47761-w
Lacy P., McKay R. T., Finkel M., Karnovsky A., Woehler S., Lewis M. J., et al. (2014). Signal Intensities Derived from Different NMR Probes and Parameters Contribute to Variations in Quantification of Metabolites. PLoS ONE 9, e85732. 10.1371/journal.pone.0085732
Lambert V., Hansen S., Schoumacher M., Lecomte J., Leenders J., Hubert P., et al. (2020). Pyruvate Dehydrogenase Kinase/lactate axis: a Therapeutic Target for Neovascular Age-Related Macular Degeneration Identified by Metabolomics. J. Mol. Med. 98, 1737–1751. 10.1007/s00109-020-01994-9
Lane A. N., Fan T. W.-M., (2017). NMR-based Stable Isotope Resolved Metabolomics in Systems Biochemistry. Arch. Biochem. Biophys. 628, 123–131. 10.1016/j.abb.2017.02.009
Lane A. N., Fan T. W.-M., Bousamra M., Higashi R. M., Yan J., Miller D. M., (2011). Stable Isotope-Resolved Metabolomics (SIRM) in Cancer Research with Clinical Application to NonSmall Cell Lung Cancer. OMICS: A J. Integr. Biol. 15, 173–182. 10.1089/omi.2010.0088
Lane A. N., Higashi R. M., Fan T. W.-M., (2016). Preclinical Models for Interrogating Drug Action in Human Cancers Using Stable Isotope Resolved Metabolomics (SIRM). Metabolomics 12, 118. 10.1007/s11306-016-1065-y
Lane A. N., Higashi R. M., Fan T. W.-M., (2019). NMR and MS-based Stable Isotope-Resolved Metabolomics and Applications in Cancer Metabolism. TrAC Trends Anal. Chem. 120, 115322. 10.1016/j.trac.2018.11.020
Le Guennec A., Tea I., Antheaume I., Martineau E., Charrier B., Pathan M., et al. (2012). Fast Determination of Absolute Metabolite Concentrations by Spatially Encoded 2D NMR: Application to Breast Cancer Cell Extracts. Anal. Chem. 84, 10831–10837. 10.1021/ac3033504
Leaptrot K. L., May J. C., Dodds J. N., McLean J. A., (2019). Ion Mobility Conformational Lipid Atlas for High Confidence Lipidomics. Nat. Commun. 10, 985. 10.1038/s41467-019-08897-5
Lee K.-M., Jeon J.-Y., Lee B.-J., Lee H., Choi H.-K., (2017). Application of Metabolomics to Quality Control of Natural Product Derived Medicines. Biomol. Ther. 25, 559–568. 10.4062/biomolther.2016.249
Leenders J., Grootveld M., Percival B., Gibson M., Casanova F., Wilson P. B., (2020). Benchtop Low-Frequency 60 MHz NMR Analysis of Urine: A Comparative Metabolomics Investigation. Metabolites 10, 155. 10.3390/metabo10040155
Lerche M. H., Yigit D., Frahm A. B., Ardenkjær-Larsen J. H., Malinowski R. M., Jensen P. R., (2017). Stable Isotope-Resolved Analysis with Quantitative Dissolution Dynamic Nuclear Polarization. Anal. Chem. 90, 674–678. 10.1021/acs.analchem.7b02779
Letertre M. P. M., Dervilly G., Giraudeau P., (2021). Combined Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry Approaches for Metabolomics. Anal. Chem. 93, 500–518. 10.1021/acs.analchem.0c04371
Li B., He X., Jia W., Li H., (2017a). Novel Applications of Metabolomics in Personalized Medicine: A Mini-Review. Molecules 22, 1173. 10.3390/molecules22071173
Li J., Vosegaard T., Guo Z., (2017b). Applications of Nuclear Magnetic Resonance in Lipid Analyses: An Emerging Powerful Tool for Lipidomics Studies. Prog. Lipid Res. 68, 37–56. 10.1016/j.plipres.2017.09.003
Li S., Tian Y., Jiang P., Lin Y., Liu X., Yang H., (2021). Recent Advances in the Application of Metabolomics for Food Safety Control and Food Quality Analyses. Crit. Rev. Food Sci. Nutr. 61, 1448–1469. 10.1080/10408398.2020.1761287
Lindon J. C., Nicholson J. K., Wilson I. D., (2000). Directly Coupled HPLC-NMR and HPLC-NMR-MS in Pharmaceutical Research and Development. J. Chromatogr. B: Biomed. Sci. Appl. 748, 233–258. 10.1016/s0378-4347(00)00320-0
Lindon J. C., Nicholson J. K., Wilson I. D., (2002). “Biomedical and Pharmaceutical Applications of HPLC-NMR and HPLC-NMR-MS,” in On-Line LC-NMR and Related Techniques (New-York, NY: John Wiley & Sons), 45–87. 10.1002/0470854820.ch3
Lloyd L. S., Adams R. W., Bernstein M., Coombes S., Duckett S. B., Green G. G. R., et al. (2012). Utilization of SABRE-Derived Hyperpolarization to Detect Low-Concentration Analytes via 1D and 2D NMR Methods. J. Am. Chem. Soc. 134, 12904–12907. 10.1021/ja3051052
Locci E., Noto A., Puddu M., Pomero G., Demontis R., Dalmazzo C., et al. (2018). A Longitudinal 1H-NMR Metabolomics Analysis of Urine from Newborns with Hypoxic-Ischemic Encephalopathy Undergoing Hypothermia Therapy. Clinical and Medical Legal Insights. PLOS ONE 13, e0194267. 10.1371/journal.pone.0194267
Lopez J. M., Cabrera R., Maruenda H., (2019). Ultra-Clean Pure Shift 1H-NMR Applied to Metabolomics Profiling. Sci. Rep. 9, 6900. 10.1038/s41598-019-43374-5
Lucas‐Torres C., Roumes H., Bouchaud V., Bouzier‐Sore A. K., Wong A., (2021). Metabolic NMR Mapping with Microgram Tissue Biopsy. NMR Biomed. 34, e4477. 10.1002/nbm.4477
Lydic T. A., Goo Y. H., (2018). Lipidomics Unveils the Complexity of the Lipidome in Metabolic Diseases. Clin. Transl. Med. 7, 4. 10.1186/s40169-018-0182-9
Mahrous E. A., Farag M. A., (2015). Two Dimensional NMR Spectroscopic Approaches for Exploring Plant Metabolome: A Review. J. Adv. Res. 6, 3–15. 10.1016/j.jare.2014.10.003
Maier T. V., Schmitt-Kopplin P., (2016). Capillary Electrophoresis in Metabolomics. Methods Mol. Biol. Clifton NJ 1483, 437–470. 10.1007/978-1-4939-6403-1_21
Maltesen R. G., Wimmer R., Rasmussen B. S., (2020). A Longitudinal Serum NMR-Based Metabolomics Dataset of Ischemia-Reperfusion Injury in Adult Cardiac Surgery. Sci. Data 7, 198. 10.1038/s41597-020-0545-0
Manzoni C., Kia D. A., Vandrovcova J., Hardy J., Wood N. W., Lewis P. A., et al. (2018). Genome, Transcriptome and Proteome: the Rise of Omics Data and Their Integration in Biomedical Sciences. Brief. Bioinform. 19, 286–302. 10.1093/bib/bbw114
Marchand J., Martineau E., Guitton Y., Dervilly-Pinel G., Giraudeau P., (2017). Multidimensional NMR Approaches towards Highly Resolved, Sensitive and High-Throughput Quantitative Metabolomics. Curr. Opin. Biotechnol. 43, 49–55. 10.1016/j.copbio.2016.08.004
Marchand J., Martineau E., Guitton Y., Le Bizec B., Dervilly-Pinel G., Giraudeau P., (2018). A Multidimensional 1H NMR Lipidomics Workflow to Address Chemical Food Safety Issues. Metabolomics 14, 60. 10.1007/s11306-018-1360-x
Markley J. L., Brüschweiler R., Edison A. S., Eghbalnia H. R., Powers R., Raftery D., et al. (2017). The Future of NMR-Based Metabolomics. Curr. Opin. Biotechnol. 43, 34–40. 10.1016/j.copbio.2016.08.001
Markley J. L., Dashti H., Wedell J. R., Westler W. M., Eghbalnia H. R., (2019). “Tools for Enhanced NMR-Based Metabolomics Analysis,” in NMR-Based Metabolomics: Methods And Protocols Methods in Molecular Biology. Editors Gowda G. A. N., Raftery D., (New York, NY: Springer), 413–427. 10.1007/978-1-4939-9690-2_23
Marshall D. D., Powers R., (2017). Beyond the Paradigm: Combining Mass Spectrometry and Nuclear Magnetic Resonance for Metabolomics. Prog. Nucl. Magn. Reson. Spectrosc. 100, 1–16. 10.1016/j.pnmrs.2017.01.001
Marshall D. D., Lei S., Worley B., Huang Y., Garcia-Garcia A., Franco R., et al. (2015). Combining DI-ESI-MS and NMR Datasets for Metabolic Profiling. Metabolomics 11, 391–402. 10.1007/s11306-014-0704-4
Martineau E., Giraudeau P., Tea I., Akoka S., (2011). Fast and Precise Quantitative Analysis of Metabolic Mixtures by 2D 1H INADEQUATE NMR. J. Pharm. Biomed. Anal. 54, 252–257. 10.1016/j.jpba.2010.07.046
Martineau E., Dumez J.-N., Giraudeau P., (2020). Fast Quantitative 2D NMR for Metabolomics and Lipidomics: A Tutorial. Magn. Reson. Chem. 58, 390–403. 10.1002/mrc.4899
Matheus N., Hansen S., Rozet E., Peixoto P., Maquoi E., Lambert V., et al. (2014). An Easy, Convenient Cell and Tissue Extraction Protocol for Nuclear Magnetic Resonance Metabolomics. Phytochem. Anal. 25, 342–349. 10.1002/pca.2498
Mazurek S., Boschek C. B., Eigenbrodt E., (1997). The Role of Phosphometabolites in Cell Proliferation, Energy Metabolism, and Tumor Therapy. J. Bioenerg. Biomembr. 29, 315–330. 10.1023/a:1022490512705
Mili M., Panthu B., Madec A.-M., Berger M.-A., Rautureau G. J. P., Elena-Herrmann B., (2020). Fast and Ergonomic Extraction of Adherent Mammalian Cells for NMR-Based Metabolomics Studies. Anal. Bioanal. Chem. 412, 5453–5463. 10.1007/s00216-020-02764-9
Millard P., Cahoreau E., Heuillet M., Portais J.-C., Lippens G., (2017). 15N-NMR-Based Approach for Amino Acids-Based 13C-Metabolic Flux Analysis of Metabolism. Anal. Chem. 89, 2101–2106. 10.1021/acs.analchem.6b04767
Moayyeri A., Hammond C. J., Valdes A. M., Spector T. D., (2013). Cohort Profile: TwinsUK and Healthy Ageing Twin Study. Int. J. Epidemiol. 42, 76–85. 10.1093/ije/dyr207
Mobli M., Hoch J. C., (2014). Nonuniform Sampling and Non-Fourier Signal Processing Methods in Multidimensional NMR. Prog. Nucl. Magn. Reson. Spectrosc. 83, 21–41. 10.1016/j.pnmrs.2014.09.002
Nagana Gowda G. A., Gowda Y. N., Raftery D., (2015a). Expanding the Limits of Human Blood Metabolite Quantitation Using NMR Spectroscopy. Anal. Chem. 87, 706–715. 10.1021/ac503651e
Nagana Gowda G. A., Gowda Y. N., Raftery D., (2015b). Massive Glutamine Cyclization to Pyroglutamic Acid in Human Serum Discovered Using NMR Spectroscopy. Anal. Chem. 87, 3800–3805. 10.1021/ac504435b
Nagana Gowda G. A., Djukovic D., Bettcher L. F., Gu H., Raftery D., (2018). NMR-Guided Mass Spectrometry for Absolute Quantitation of Human Blood Metabolites. Anal. Chem. 90, 2001–2009. 10.1021/acs.analchem.7b04089
Nelson S. J., Kurhanewicz J., Vigneron D. B., Larson P. E. Z., Harzstark A. L., Ferrone M., et al. (2013). Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate. Sci. Transl. Med. 5, 198ra108. 10.1126/scitranslmed.3006070
Nicholson J. K., Lindon J. C., (2008). Metabonomics. Nature 455, 1054–1056. 10.1038/4551054a
Niedenführ S., Wiechert W., Nöh K., (2015). How to Measure Metabolic Fluxes: a Taxonomic Guide for 13 C Fluxomics. Curr. Opin. Biotechnol. 34, 82–90. 10.1016/j.copbio.2014.12.003
Nielsen J., (2017). Systems Biology of Metabolism: A Driver for Developing Personalized and Precision Medicine. Cel Metab. 25, 572–579. 10.1016/j.cmet.2017.02.002
Njock G. B. B., Pegnyemb D. E., Bartholomeusz T. A., Christen P., Vitorge B., Nuzillard J.-M., et al. (2010). Spectral Aliasing: A Super Zoom for 2D-NMR Spectra. Principles and Applications. Chimia 64, 235–240. 10.2533/chimia.2010.235
Ouldamer L., Nadal-Desbarats L., Chevalier S., Body G., Goupille C., Bougnoux P., (2016). NMR-Based Lipidomic Approach to Evaluate Controlled Dietary Intake of Lipids in Adipose Tissue of a Rat Mammary Tumor Model. J. Proteome Res. 15, 868–878. 10.1021/acs.jproteome.5b00788
Paglia G., Kliman M., Claude E., Geromanos S., Astarita G., (2015). Applications of Ion-Mobility Mass Spectrometry for Lipid Analysis. Anal. Bioanal. Chem. 407, 4995–5007. 10.1007/s00216-015-8664-8
Palmnas M., Vogel H., (2013). The Future of NMR Metabolomics in Cancer Therapy: Towards Personalizing Treatment and Developing Targeted Drugs? Metabolites 3, 373–396. 10.3390/metabo3020373
Pan Z., Raftery D., (2007). Comparing and Combining NMR Spectroscopy and Mass Spectrometry in Metabolomics. Anal. Bioanal. Chem. 387, 525–527. 10.1007/s00216-006-0687-8
Pan Z., Gu H., Talaty N., Chen H., Shanaiah N., Hainline B. E., et al. (2007). Principal Component Analysis of Urine Metabolites Detected by NMR and DESI-MS in Patients with Inborn Errors of Metabolism. Anal. Bioanal. Chem. 387, 539–549. 10.1007/s00216-006-0546-7
Pang H., Jia W., Hu Z., (2019). Emerging Applications of Metabolomics in Clinical Pharmacology. Clin. Pharmacol. Ther. 106, 544–556. 10.1002/cpt.1538
Patra B., Sharma M., Hale W., Utz M., (2021). Time-Resolved Non-invasive Metabolomic Monitoring of a Single Cancer Spheroid by Microfluidic NMR. Sci. Rep. 11, 53. 10.1038/s41598-020-79693-1
Patti G. J., Yanes O., Siuzdak G., (2012). Metabolomics: the Apogee of the Omics Trilogy. Nat. Rev. Mol. Cel Biol. 13, 263–269. 10.1038/nrm3314
Percival B. C., Grootveld M., Gibson M., Osman Y., Molinari M., Jafari F., et al. (2018). Low-Field, Benchtop NMR Spectroscopy as a Potential Tool for Point-of-Care Diagnostics of Metabolic Conditions: Validation, Protocols and Computational Models. High-Throughput 8, 2. 10.3390/ht8010002
Pinu F. R., Goldansaz S. A., Jaine J., (2019). Translational Metabolomics: Current Challenges and Future Opportunities. Metabolites 9, 108. 10.3390/metabo9060108
Plainchont B., Berruyer P., Dumez J.-N., Jannin S., Giraudeau P., (2018). Dynamic Nuclear Polarization Opens New Perspectives for NMR Spectroscopy in Analytical Chemistry. Anal. Chem. 90, 3639–3650. 10.1021/acs.analchem.7b05236
Powers R., (2014). The Current State of Drug Discovery and a Potential Role for NMR Metabolomics. J. Med. Chem. 57, 5860–5870. 10.1021/jm401803b
Psychogios N., Hau D. D., Peng J., Guo A. C., Mandal R., Bouatra S., et al. (2011). The Human Serum Metabolome. PLOS ONE 6, e16957. 10.1371/journal.pone.0016957
Puig-Castellví F., Pérez Y., Piña B., Tauler R., Alfonso I., (2018). Comparative Analysis of 1H NMR and 1H-13C HSQC NMR Metabolomics to Understand the Effects of Medium Composition in Yeast Growth. Anal. Chem. 90, 12422–12430. 10.1021/acs.analchem.8b01196
Purwaha P., Silva L. P., Hawke D. H., Weinstein J. N., Lorenzi P. L., (2014). An Artifact in LC-MS/MS Measurement of Glutamine and Glutamic Acid: In-Source Cyclization to Pyroglutamic Acid. Anal. Chem. 86, 5633–5637. 10.1021/ac501451v
Rampler E., Abiead Y. E., Schoeny H., Rusz M., Hildebrand F., Fitz V., et al. (2021). Recurrent Topics in Mass Spectrometry-Based Metabolomics and Lipidomics-Standardization, Coverage, and Throughput. Anal. Chem. 93, 519–545. 10.1021/acs.analchem.0c04698
Ravanbakhsh S., Liu P., Bjorndahl T., Mandal R., Grant J. R., Wilson M., et al. (2015). Accurate, Fully-Automated NMR Spectral Profiling for Metabolomics. PLoS ONE 10, e0124219. 10.1371/journal.pone.0124219
Rhodes C. J., (2017). Magnetic Resonance Spectroscopy. Sci. Prog. 100, 241–292. 10.3184/003685017X14993478654307
Röhnisch H. E., Eriksson J., Müllner E., Agback P., Sandström C., Moazzami A. A., (2018). AQuA: An Automated Quantification Algorithm for High-Throughput NMR-Based Metabolomics and its Application in Human Plasma. Anal. Chem. 90, 2095–2102. 10.1021/acs.analchem.7b04324
Robinette S. L., Ajredini R., Rasheed H., Zeinomar A., Dossey F. C., Dossey A. T., et al. (2011). Hierarchical Alignment and Full Resolution Pattern Recognition of 2D NMR Spectra: Application to Nematode Chemical Ecology. Anal. Chem. 83, 1649–1657. 10.1021/ac102724x
Romano F., Meoni G., Manavella V., Baima G., Tenori L., Cacciatore S., et al. (2018). Analysis of Salivary Phenotypes of Generalized Aggressive and Chronic Periodontitis through Nuclear Magnetic Resonance-Based Metabolomics. J. Periodontol. 89, 1452–1460. 10.1002/JPER.18-0097
Rouger L., Gouilleux B., Giraudeau P., (2016). “Fast N-Dimensional Data Acquisition Methods,” in Encyclopedia of Spectroscopy and Spectrometry. Editors Lindon J. C., Tranter G. E., Koppenaal D., 3rd edition (Amsterdam: Elsevier), 588–596.
Ruhland E., Bund C., Outilaft H., Piotto M., Namer I. J., (2019). A Metabolic Database for Biomedical Studies of Biopsy Specimens by High‐resolution Magic Angle Spinning Nuclear MR: a Qualitative and Quantitative Tool. Magn. Reson. Med. 82, 62–83. 10.1002/mrm.27696
Rzeznik M., Triba M. N., Levy P., Jungo S., Botosoa E., Duchemann B., et al. (2017). Identification of a Discriminative Metabolomic Fingerprint of Potential Clinical Relevance in Saliva of Patients with Periodontitis Using 1H Nuclear Magnetic Resonance (NMR) Spectroscopy. PLOS ONE 12, e0182767. 10.1371/journal.pone.0182767
Sahoo N. K., Tejaswini G., Madhusmita S., Muralikrishna K. S., (2020). An Overview on NMR Spectroscopy Based Metabolomics. Int. J. Pharm. Sci. Dev. Res. 6, 016–020. 10.17352/ijpsdr.000029
Salvia M.-V., Ramadori F., Springhetti S., Diez-Castellnou M., Perrone B., Rastrelli F., et al. (2015). Nanoparticle-Assisted NMR Detection of Organic Anions: From Chemosensing to Chromatography. J. Am. Chem. Soc. 137, 886–892. 10.1021/ja511205e
Sarafidis K., Chatziioannou A. C., Thomaidou A., Gika H., Mikros E., Benaki D., et al. (2017). Urine Metabolomics in Neonates with Late-Onset Sepsis in a Case-Control Study. Sci. Rep. 7, 45506. 10.1038/srep45506
Sasaki K., Sagawa H., Suzuki M., Yamamoto H., Tomita M., Soga T., et al. (2019). Metabolomics Platform with Capillary Electrophoresis Coupled with High-Resolution Mass Spectrometry for Plasma Analysis. Anal. Chem. 91, 1295–1301. 10.1021/acs.analchem.8b02994
Scarfe G. B., Wright B., Clayton E., Taylor S., Wilson I. D., Lindon J. C., et al. (1998). 19F-NMR and Directly Coupled HPLC-NMR-MS Investigations into the Metabolism of 2-bromo-4- Trifluoromethylaniline in Rat: a Urinary Excretion Balance Study without the Use of Radiolabelling. Xenobiotica 28, 373–388. 10.1080/004982598239489
Scarfe G. B., Wright B., Clayton E., Taylor S., Wilson I. D., Lindon J. C., et al. (1999). Quantitative Studies on the Urinary Metabolic Fate of 2-Chloro-4-Trifluoromethylaniline in the Rat Using 19F-NMR Spectroscopy and Directly Coupled HPLCNMR-MS. Xenobiotica 29, 77–91. 10.1080/004982599238821
Schanda P., (2009). Fast-pulsing Longitudinal Relaxation Optimized Techniques: Enriching the Toolbox of Fast Biomolecular NMR Spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 55, 238–265. 10.1016/j.pnmrs.2009.05.002
Schmidt M. A., Goodwin T. J., (2013). Personalized Medicine in Human Space Flight: Using Omics Based Analyses to Develop Individualized Countermeasures that Enhance Astronaut Safety and Performance. Metabolomics 9, 1134–1156. 10.1007/s11306-013-0556-3
Sellies L., Reile I., Aspers R. L. E. G., Feiters M. C., Rutjes F. P. J. T., Tessari M., (2019). Parahydrogen Induced Hyperpolarization Provides a Tool for NMR Metabolomics at Nanomolar Concentrations. Chem. Commun. 55, 7235–7238. 10.1039/C9CC02186H
Sherman L. M., Petrov A. P., Karger L. F. P., Tetrick M. G., Dovichi N. J., Camden J. P., (2020). A Surface-Enhanced Raman Spectroscopy Database of 63 Metabolites. Talanta 210, 120645. 10.1016/j.talanta.2019.120645
Shockcor J. P., Unger S. E., Wilson I. D., Foxall P. J. D., Nicholson J. K., Lindon J. C., (1996). Combined HPLC, NMR Spectroscopy, and Ion-Trap Mass Spectrometry with Application to the Detection and Characterization of Xenobiotic and Endogenous Metabolites in Human Urine. Anal. Chem. 68, 4431–4435. 10.1021/ac9606463
Shockcor J. P., (2002). “Application of On-Line LC-NMR and Related Techniques to Drug Metabolism Studies,” in On-Line LC-NMR and Related Techniques (John Wiley & Sons), 89–108. 10.1002/0470854820.ch4
Silva Elipe M. V., (2003). Advantages and Disadvantages of Nuclear Magnetic Resonance Spectroscopy as a Hyphenated Technique. Analytica Chim. Acta 497, 1–25. 10.1016/j.aca.2003.08.048
Simón-Manso Y., Lowenthal M. S., Kilpatrick L. E., Sampson M. L., Telu K. H., Rudnick P. A., et al. (2013). Metabolite Profiling of a NIST Standard Reference Material for Human Plasma (SRM 1950): GC-MS, LC-MS, NMR, and Clinical Laboratory Analyses, Libraries, and Web-Based Resources. Anal. Chem. 85, 11725–11731. 10.1021/ac402503m
Singh K., Blümich B., (2016). NMR Spectroscopy with Compact Instruments. TrAC Trends Anal. Chem. 83, 12–26. 10.1016/j.trac.2016.02.014
Sliz E., Kettunen J., Holmes M. V., Williams C. O., Boachie C., Wang Q., et al. (2018). Metabolomic Consequences of Genetic Inhibition of PCSK9 Compared with Statin Treatment. Circulation 138, 2499–2512. 10.1161/CIRCULATIONAHA.118.034942
Snytnikova O. A., Khlichkina A. A., Sagdeev R. Z., Tsentalovich Y. P., (2019). Evaluation of Sample Preparation Protocols for Quantitative NMR-Based Metabolomics. Metabolomics 15, 84. 10.1007/s11306-019-1545-y
Soininen P., Kangas A. J., Würtz P., Suna T., Ala-Korpela M., (2015). Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Cardiovascular Epidemiology and Genetics. Circ. Cardiovasc. Genet. 8, 192–206. 10.1161/CIRCGENETICS.114.000216
Taherkhani A., Nafar M., Arefi-Oskouie A., Broumandnia N., Parvin M., Mahmoudieh L., et al. (2019). Metabolomic Analysis of Membranous Glomerulonephritis: Identification of a Diagnostic Panel and Pathogenic Pathways. Arch. Med. Res. 50, 159–169. 10.1016/j.arcmed.2019.08.004
Takis P. G., Ghini V., Tenori L., Turano P., Luchinat C., (2019). Uniqueness of the NMR Approach to Metabolomics. TrAC Trends Anal. Chem. 120, 115300. 10.1016/j.trac.2018.10.036
Teul J., Rupérez F. J., Garcia A., Vaysse J., Balayssac S., Gilard V., et al. (2009). Improving Metabolite Knowledge in Stable Atherosclerosis Patients by Association and Correlation of GC-MS and 1H NMR Fingerprints. J. Proteome Res. 8, 5580–5589. 10.1021/pr900668v
Tilgner M., Vater T. S., Habbel P., Cheng L. L., (2019). High-Resolution Magic Angle Spinning (HRMAS) NMR Methods in Metabolomics. Methods Mol. Biol. 2037, 49–67. 10.1007/978-1-4939-9690-2_4
Tolstikov V., Akmaev V. R., Sarangarajan R., Narain N. R., Kiebish M. A., (2017). Clinical Metabolomics: a Pivotal Tool for Companion Diagnostic Development and Precision Medicine. Expert Rev. Mol. Diagn. 17, 411–413. 10.1080/14737159.2017.1308827
Trivedi D. K., Hollywood K. A., Goodacre R., (2017). Metabolomics for the Masses: The Future of Metabolomics in a Personalized World. New Horiz. Transl. Med. 3, 294–305. 10.1016/j.nhtm.2017.06.001
Tynkkynen T., Wang Q., Ekholm J., Anufrieva O., Ohukainen P., Vepsäläinen J., et al. (2019). Proof of Concept for Quantitative Urine NMR Metabolomics Pipeline for Large-Scale Epidemiology and Genetics. Int. J. Epidemiol. 48, 978–993. 10.1093/ije/dyy287
Ubhi B. K., Riley J. H., Shaw P. A., Lomas D. A., Tal-Singer R., MacNee W., et al. (2012). Metabolic Profiling Detects Biomarkers of Protein Degradation in COPD Patients. Eur. Respir. J. 40, 345–355. 10.1183/09031936.00112411
van de Weijer T., Schrauwen-Hinderling V. B., (2019). Application of Magnetic Resonance Spectroscopy in Metabolic Research. Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 1865, 741–748. 10.1016/j.bbadis.2018.09.013
Van Q. N., Issaq H. J., Jiang Q., Li Q., Muschik G. M., Waybright T. J., et al. (2008). Comparison of 1D and 2D NMR Spectroscopy for Metabolic Profiling. J. Proteome Res. 7, 630–639. 10.1021/pr700594s
Verhoeven A., Slagboom E., Wuhrer M., Giera M., Mayboroda O. A., (2017). Automated Quantification of Metabolites in Blood-Derived Samples by NMR. Analytica Chim. Acta 976, 52–62. 10.1016/j.aca.2017.04.013
Viant M. R., (2009). Applications of Metabolomics to the Environmental Sciences. Metabolomics 5, 1–2. 10.1007/s11306-009-0157-3
Vignoli A., Ghini V., Meoni G., Licari C., Takis P. G., Tenori L., et al. (2019a). High‐Throughput Metabolomics by 1D NMR. Angew. Chem. Int. Ed. 58, 968–994. 10.1002/anie.201804736
Vignoli A., Tenori L., Giusti B., Takis P. G., Valente S., Carrabba N., et al. (2019b). NMR-based Metabolomics Identifies Patients at High Risk of Death within Two Years after Acute Myocardial Infarction in the AMI-Florence II Cohort. BMC Med. 17, 3. 10.1186/s12916-018-1240-2
Vignoli A., Risi E., McCartney A., Migliaccio I., Moretti E., Malorni L., et al. (2021). Precision Oncology via NMR-Based Metabolomics: A Review on Breast Cancer. Int. J. Mol. Sci. 22, 4687. 10.3390/ijms22094687
Wallmeier J., Samol C., Ellmann L., Zacharias H. U., Vogl F. C., Garcia M., et al. (2017). Quantification of Metabolites by NMR Spectroscopy in the Presence of Protein. J. Proteome Res. 16, 1784–1796. 10.1021/acs.jproteome.7b00057
Wang C., Zhang B., Timári I., Somogyi Á., Li D.-W., Adcox H. E., et al. (2019). Accurate and Efficient Determination of Unknown Metabolites in Metabolomics by NMR-Based Molecular Motif Identification. Anal. Chem. 91, 15686–15693. 10.1021/acs.analchem.9b03849
Wang C., Timári I., Zhang B., Li D.-W., Leggett A., Amer A. O., et al. (2020). COLMAR Lipids Web Server and Ultrahigh-Resolution Methods for Two-Dimensional Nuclear Magnetic Resonance- and Mass Spectrometry-Based Lipidomics. J. Proteome Res. 19, 1674–1683. 10.1021/acs.jproteome.9b00845
Welsh P., Rankin N., Li Q., Mark P. B., Würtz P., Ala-Korpela M., et al. (2018). Circulating Amino Acids and the Risk of Macrovascular, Microvascular and Mortality Outcomes in Individuals with Type 2 Diabetes: Results from the ADVANCE Trial. Diabetologia 61, 1581–1591. 10.1007/s00125-018-4619-x
Wilson D. M., Keshari K. R., Larson P. E. Z., Chen A. P., Hu S., Criekinge M. V., et al. (2010). Multi-compound Polarization by DNP Allows Simultaneous Assessment of Multiple Enzymatic Activities In Vivo. J. Magn. Reson. 205, 141–147. 10.1016/j.jmr.2010.04.012
Wishart D. S., (2016). Emerging Applications of Metabolomics in Drug Discovery and Precision Medicine. Nat. Rev. Drug Discov. 15, 473–484. 10.1038/nrd.2016.32
Wishart D. S., (2019). NMR Metabolomics: A Look Ahead. J. Magn. Reson. 306, 155–161. 10.1016/j.jmr.2019.07.013
Yao X., Cao D., Wang F., Zhang W., Ma C., Song M., (2019). An Overview of Omics Approaches to Characterize the Effect of Perfluoroalkyl Substances in Environmental Health. TrAC Trends Anal. Chem. 121, 115367. 10.1016/j.trac.2018.12.021
Yu K.-H., Snyder M., (2016). Omics Profiling in Precision Oncology. Mol. Cell Proteomics 15, 2525–2536. 10.1074/mcp.O116.059253
Yu B., Zanetti K. A., Temprosa M., Albanes D., Appel N., Barrera C. B., et al. (2019). The Consortium of Metabolomics Studies (COMETS): Metabolomics in 47 Prospective Cohort Studies. Am. J. Epidemiol. 188, 991–1012. 10.1093/aje/kwz028
Zacharias H., Altenbuchinger M., Gronwald W., (2018). Statistical Analysis of NMR Metabolic Fingerprints: Established Methods and Recent Advances. Metabolites 8, 47. 10.3390/metabo8030047
Zhang B., Xie M., Bruschweiler-Li L., Brüschweiler R., (2016). Nanoparticle-Assisted Removal of Protein in Human Serum for Metabolomics Studies. Anal. Chem. 88, 1003–1007. 10.1021/acs.analchem.5b03889
Zimmermann M., Zimmermann-Kogadeeva M., Wegmann R., Goodman A. L., (2019). Mapping Human Microbiome Drug Metabolism by Gut Bacteria and Their Genes. Nature 570, 462–467. 10.1038/s41586-019-1291-3
Zlatkis A., Liebich H. M., (1971). Profile of Volatile Metabolites in Human Urine. Clin. Chem. 17, 592–594. 10.1093/clinchem/17.7.592