[en] Many experimental methods are available for the characterization of nanostructures, but most of them are limited by stringent experimental conditions. When it comes to analysing nanostructures in the bulk or in their natural environment – even as ordinary as water at room temperature – small-angle scattering (SAS) of X-rays or neutrons is often the only option. The rapid worldwide development of synchrotron and neutron facilities over recent decades has opened unprecedented possibilities for using SAS in situ and in a time-resolved way. But, in spite of its huge potential in the field of nanomaterials in general, SAS is covered far less than other characterization methods in non-specialized curricula. Presented here is a rigorous discussion of small-angle scattering, at a technical level comparable to the classical undergraduate coverage of X-ray diffraction by crystals and which contains diffraction as a particular case.
Disciplines :
Materials science & engineering Physics
Author, co-author :
Gommes, Cédric ; Université de Liège - ULiège > Department of Chemical Engineering > Department of Chemical Engineering
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ait-Mou, Y., Hsu, K., Farman, G. P., Kumar, M., Greaser, M. L., Irving, T. C. & de Tombe, P. P. (2016). Proc. Natl Acad. Sci. USA, 113, 2306-2311.
Allen, A. J., Thomas, J. J. & Jennings, H. M. (2007). Nat. Mater. 6, 311-316.
Andersen, K., Argyriou, D., Jackson, A., Houston, J., Henry, P. F., Deen, P. P., Toft-Petersen, R., Beran, P., Strobl, M., Arnold, T., Wacklin-Knecht, H., Tsapatsaris, N., Oksanen, E., Woracek, R., Schweika, W., Mannix, D., Hiess, A., Kennedy, S., Kirstein, O., Petersson Årsköld, S., Taylor, J., Hagen, M. E., Laszlo, G., Kanaki, K., Piscitelli, F., Khaplanov, A., Stefanescu, I., Kittelmann, Th., Pfeiffer, D., Hall-Wilton, R., Lopez, C. I., Aprigliano, G., Whitelegg, L., Moreira, F. Y., Olsson, M., Bordallo, H. N., Martín-Rodríguez, D., Schneider, H., Sharp, M., Hartl, M., Nagy, G., Ansell, S., Pullen, S., Vickery, A., Fedrigo, A., Mezei, F., Arai, M., Heenan, R. K., Halcrow, W., Turner, D., Raspino, D., Orszulik, A., Cooper, J., Webb, N., Galsworthy, P., Nightingale, J., Langridge, S., Elmer, J., Frielinghaus, H., Hanslik, R., Gussen, A., Jaksch, S., Engels, R., Kozielewski, T., Butterweck, S., Feygenson, M., Harbott, P., Poqué, A., Schwaab, A., Lieutenant, K., Violini, N., Voigt, J., Brückel, T., Koenen, M., Kämmerling, H., Babcock, E., Salhi, Z., Wischnewski, A., Heynen, A., Désert, S., Jestin, J., Porcher, F., Fabrèges, X., Fabrèges, G., Annighöfer, B., Klimko, S., Dupont, Th., Robillard, Th., Goukassov, A., Longeville, S., Alba-Simionesco, Ch., Bourges, P., Guyon Le Bouffy, J., Lavie, P., Rodrigues, S., Calzada, E., Lerche, M., Schillinger, B., Schmakat, P., Schulz, M., Seifert, M., Lohstroh, W., Petry, W., Neuhaus, J., Loaiza, L., Tartaglione, A., Glavic, A., Schütz, S., Stahn, J., Lehmann, E., Morgano, M., Schefer, J., Filges, U., Klauser, Ch., Niedermayer, Ch., Fenske, J., Nowak, G., Rouijaa, M., Siemers, D. J., Kiehn, R., Müller, M., Carlsen, H., Udby, L., Lefmann, K., Birk, J. O., Holm-Dahlin, S., Bertelsen, M., Hansen, U. B., Olsen, M. A., Christensen, M., Iversen, K., Christensen, N. B., Rønnow, H. M., Freeman, P. G., Hauback, B. C., Kolevatov, R., Llamas-Jansa, I., Orecchini, A., Sacchetti, F., Petrillo, C., Paciaroni, A., Tozzi, P., Zanatta, M., Luna, P., Herranz, I., del Moral, O. G., Huerta, M., Magán, M., Mosconi, M., Abad, E., Aguilar, J., Stepanyan, S., Bakedano, G., Vivanco, R., Bustinduy, I., Sordo, F., Martínez, J. L., Lechner, R. E., Villacorta, F. J., Šaroun, J., Lukáš, P., Markó, M., Zanetti, M., Bellissima, S., del Rosso, L., Masi, F., Bovo, C., Chowdhury, M., De Bonis, A., Di Fresco, L., Scatigno, C., Parker, S. F., Fernandez-Alonso, F., Colognesi, D., Senesi, R., Andreani, C., Gorini, G., Scionti, G. & Schreyer, A. (2020). Nucl. Instrum. Methods Phys. Res. A, 957, 163402.
Bailey, I. (2003). Z. Kristallogr. Cryst. Mater. 218, 84-95.
Ciccariello, S., Goodisman, J. & Brumberger, H. (1988). J. Appl. Cryst. 21, 117-128.
Feigin, L. A. & Svergun, D. I. (1987). Structure Analysis by Small-Angle X-ray and Neutron Scattering. Berlin: Springer.
Feoktystov, A. V., Frielinghaus, H., Di, Z., Jaksch, S., Pipich, V., Appavou, M.-S., Babcock, E., Hanslik, R., Engels, R., Kemmerling, G., Kleines, H., Ioffe, A., Richter, D. & Brückel, T. (2015). J. Appl. Cryst. 48, 61-70.
Feynman, R. (1985). QED: The Strange Theory of Light and Matter. Princeton University Press.
Feynman, R., Leighton, R. B. & Sands, M. (2010). The Feynman Lectures on Physics: Millenium Edition. Pasadena: California Institute of Technology.
Frielinghaus, H. (2018). Nucl. Instrum. Methods Phys. Res. A, 904, 9-14.
Fujii, S., Sanada, Y., Nishimura, T., Akiba, I., Sakurai, K., Yagi, N. & Mylonas, E. (2012). Langmuir, 28, 3092-3101.
Genix, A. & Oberdisse, J. (2015). Curr. Opin. Colloid Interface Sci. 20, 293-303.
Glatter, O. & Kratky, O. (1982). Small Angle X-ray Scattering. New York: Academic Press.
Gommes, C. J., Prieto, G. & de Jongh, P. E. (2016). J. Phys. Chem. C, 120, 1488-1506.
Gräwert, M. & Svergun, D. (2020). Biochemist, 42, 36-42.
Guinier, A. & Fournet, G. (1955). Small-Angle Scattering of X-rays. New York: Wiley.
Hamley, I. W. (2021). Small-Angle Scattering: Theory, Instrumentation, Data and Applications. New York: John Wiley & Sons.
Hamley, I. W., Castelletto, V., Lu, Z. B., Imrie, C. T., Itoh, T. & Al-Hussein, M. (2004). Macromolecules, 37, 4798-4807.
Hammouda, B. (1995). A Tutorial on Small-Angle Neutron Scattering from Polymers. Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA. https://www.ncnr.nist.gov/programs/sans/pdf/polymer_tut.pdf.
Jaksch, S. (2019). arXiv:1901.07353.
Karam, R. (2018). Am. J. Phys. 86, 245-249.
Kinning, D. J. & Thomas, E. L. (1984). Macromolecules, 17, 1712-1718.
Koch, M. H. J. (2010). J. Phys. Conf. Ser. 247, 012001.
Loh, Y. L. (2017). Am. J. Phys. 85, 277-288.
Margaritondo, G. & Rebernik Ribic, P. (2011). J. Synchrotron Rad. 18, 101-108.
Merzbacher, E., Feagin, J. M. & Wu, T. (1977). Am. J. Phys. 45, 964-969.
Mitchell, J. B. A., Legarrec, J. L., Sztucki, M., Narayanan, T., Dikhtyar, V. & Jerby, E. (2008). Phys. Rev. Lett. 100, 065001.
Nahin, P. (2009). Mrs Perkin's Electric Quilt, and Other Intriguing Stories of Mathematical Physics. Princeton University Press.
Pawlak, A. & Galeski, A. (2005). Macromolecules, 38, 9688-9697.
Pearson, K. (1905). Nature, 72, 294.
Pedersen, J. S. (1997). Adv. Colloid Interface Sci. 70, 171-210.
Pynn, R. (1990). Los Alamos Sci. 19, 1-31.
Rayleigh, Lord (1880). London Edinb. Dubl. Philos. Mag. J. Sci. 10, 73-78.
Riekel, C. & Vollrath, F. (2001). Int. J. Biol. Macromol. 29, 203-210.
Roe, R.-J. (2000). Methods of X-ray and Neutron Scattering in Polymer Science. Oxford University Press.
Rubensson, J.-E. (2016). Synchrotron Radiation: an Everyday Application of Special Relativity. San Rafael: Morgan & Claypool Publishers.
Rush, J. J. (2015). Phys. Perspect. 17, 135-155.
Santoro, V., Andersen, K. H., DiJulio, D. D., Klinkby, E. B., Miller, T. M., Milstead, D., Muhrer, G., Strobl, M., Takibayev, A., Zanini, L. & Zimmer, O. (2020). J. Neutron Res. 22, 209-219.
Schmatz, W., Springer, T., Schelten, J. & Ibel, K. (1974). J. Appl. Cryst. 7, 96-116.
Sivia, D. S. (2011). Elementary Scattering Theory. Oxford University Press.
Squires, G. L. (2012). Introduction to the Theory of Thermal Neutron Scattering, 3rd ed. Cambridge University Press.
Stasio, S. di, Mitchell, J. B. A., LeGarrec, J. L., Biennier, L. & Wulff, M. (2006). Carbon, 44, 1267-1279.
Tuukkanen, A. T., Spilotros, A. & Svergun, D. I. (2017). IUCrJ, 4, 518-528.
Whitten, A. E. & Trewhella, J. (2009). Methods Mol. Biol. 544, 307-323.
Windsor, C. G. (1988). J. Appl. Cryst. 21, 582-588.
Zaccai, G. & Jacrot, B. (1983). Annu. Rev. Biophys. Bioeng. 12, 139-157.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.