[en] Supraglacial stream/river catchments drain large volumes of surface meltwater off the southwestern Greenland Ice Sheet (GrIS) surface. Previous studies note a strong seasonal evolution of their drainage density (Dd), a classic measure of drainage efficiency defined as open channel length per unit catchment area, but a direct correlation between Dd and surface meltwater runoff (R) has not been established. We use 27 high-resolution (∼0.5 m) satellite images to map seasonally evolving Dd for four GrIS supraglacial catchments, with elevations ranging from 1100 m to 1700 m. We find a positive linear correlation (r2 = 0.70, p<0.01) between Dd and simulations of runoff production from two climate models (MAR v3.11 and MERRA-2). Applying this R-Dd empirical relationship to climate model output enables parameterization of spatial and temporal changes in supraglacial drainage efficiency continuously throughout the melt season, although temporal and spatial skewness of Dd observations likely affects the application of this R-Dd relationship on crevasse fields and snow/firn surfaces. Incorporating this information into a simple surface routing model finds that high runoff leads to earlier, larger diurnal peaks of runoff transport on the ice surface, owing to increased Dd. This effect progressively declines from low (∼1100 m) to high (∼1700 m) elevation, causing a roughly order-of-magnitude reduction in diurnal runoff variability at the highest elevations relative to standard climate model output. Combining intermittent satellite Dd mapping with climate model output thus promises to improve characterization of supraglacial drainage efficiency to the benefit of supraglacial meltwater routing and subglacial hydrology models.
Research Center/Unit :
Sphères - SPHERES
Disciplines :
Earth sciences & physical geography
Author, co-author :
Yang, K.
Smith, L.
Andrews, L.
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Li, M.
Language :
English
Title :
Supraglacial drainage efficiency of the Greenland Ice Sheet estimated from remote sensing and climate models
Publication date :
19 January 2022
Journal title :
Journal of Geophysical Research. Earth Surface
ISSN :
2169-9003
eISSN :
2169-9011
Publisher :
Wiley
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abrahams, A. D. (1984). Channel networks: A geomorphological perspective. Water Resources Research, 20(2), 161–188. https://doi.org/10.1029/wr020i002p00161
Allen, G. H., Pavelsky, T. M., Barefoot, E. A., Lamb, M. P., Butman, D., Tashie, A., & Gleason, C. J. (2018). Similarity of stream width distributions across headwater systems. Nature Communications, 9(1), 610. https://doi.org/10.1038/s41467-018-02991-w
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Luthi, M. P., Ryser, C., et al. (2014). Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet. Nature, 514(7520), 80–83. https://doi.org/10.1038/nature13796
Andrews, L. C., Hoffman, M. J., Neumann, T. A., Catania, G. A., Lüthi, M. P., Hawley, R. L., et al. (2018). Seasonal evolution of the subglacial hydrologic system modified by supraglacial lake drainage in western Greenland. Journal of Geophysical Research: Earth Surface, 123(6), 1479–1496. https://doi.org/10.1029/2017jf004585
Andrews, L. C., Poinar, K., & Trunz, C. (2021). Controls on Greenland Moulin geometry and evolution from the Moulin Shape model. The Cryosphere Discussions, 1–47. https://tc.copernicus.org/preprints/tc-2021-41/
Armstrong, W. H., & Anderson, R. S. (2020). Ice-marginal lake hydrology and the seasonal dynamical evolution of Kennicott Glacier, Alaska. Journal of Glaciology, 66(259), 699–713. https://doi.org/10.1017/jog.2020.41
Banwell, A. F., Arnold, N. S., Willis, I. C., Tedesco, M., & Ahlstrøm, A. P. (2012). Modeling supraglacial water routing and lake filling on the Greenland Ice Sheet. Journal of Geophysical Research, 117(F4), F04012. https://doi.org/10.1029/2012jf002393
Banwell, A. F., Hewitt, I., Willis, I., & Arnold, N. (2016). Moulin density controls drainage development beneath the Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface, 121(12), 2248–2269. https://doi.org/10.1002/2015jf003801
Banwell, A. F., Willis, I. C., & Arnold, N. S. (2013). Modeling subglacial water routing at Paakitsoq, W Greenland. Journal of Geophysical Research: Earth Surface, 118(3), 1282–1295. https://doi.org/10.1002/jgrf.20093
Bartholomaus, T. C., Anderson, R. S., & Anderson, S. P. (2008). Response of glacier basal motion to transient water storage. Nature Geoscience, 1(1), 33–37. https://doi.org/10.1038/ngeo.2007.52
Bartholomew, I. D., Nienow, P., Sole, A., Mair, D., Cowton, T., King, M. A., & Palmer, S. (2011). Seasonal variations in Greenland Ice Sheet motion: Inland extent and behaviour at higher elevations. Earth and Planetary Science Letters, 307(3–4), 271–278. https://doi.org/10.1016/j.epsl.2011.04.014
Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., & Gelaro, R. (2016). MERRA-2. Initial evaluation of the climate. In R. D. Koster (Ed.), Technical report series on global modeling and data assimilation. National Aeronautics and Space Administration.
Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28(3), 591–605. https://doi.org/10.2307/1910133
Clason, C. C., Mair, D. W. F., Nienow, P. W., Bartholomew, I. D., Sole, A., Palmer, S., & Schwanghart, W. (2015). Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland. The Cryosphere, 9(1), 123–138. https://doi.org/10.5194/tc-9-123-2015
Colgan, W., Steffen, K., McLamb, W. S., Abdalati, W., Rajaram, H., Motyka, R., et al. (2011). An increase in crevasse extent, West Greenland: Hydrologic implications. Geophysical Research Letters, 38(18), L18502. https://doi.org/10.1029/2011gl048491
Cooper, M. G., Smith, L. C., Rennermalm, A. K., Miège, C., Pitcher, L. H., Ryan, J. C., et al. (2018). Meltwater storage in low-density near-surface bare ice in the Greenland Ice Sheet ablation zone. The Cryosphere, 12, 955–970. https://doi.org/10.5194/tc-12-955-2018
Covington, M. D., Gulley, J. D., Trunz, C., Mejia, J., & Gadd, W. (2020). Moulin volumes regulate subglacial water pressure on the Greenland Ice sheet. Geophysical Research Letters, 47(20), e2020GL088901. https://doi.org/10.1029/2020gl088901
Cowton, T., Nienow, P., Sole, A., Bartholomew, I., & Mair, D. (2016). Variability in ice motion at a land-terminating Greenlandic outlet glacier: The role of channelized and distributed drainage systems. Journal of Glaciology, 62(233), 451–466. https://doi.org/10.1017/jog.2016.36
Crozier, J., Karlstrom, L., & Yang, K. (2018). Basal control of supraglacial meltwater catchments on the Greenland Ice Sheet. The Cryosphere, 12, 3383–3407. https://doi.org/10.5194/tc-12-3383-2018
Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R., & Nienow, P. W. (2019). The influence of hydrology on the dynamics of land-terminating sectors of the Greenland Ice Sheet. Frontiers in Earth Science, 7(10). https://doi.org/10.3389/feart.2019.00010
Decaux, L., Grabiec, M., Ignatiuk, D., & Jania, J. (2019). Role of discrete water recharge from supraglacial drainage systems in modeling patterns of subglacial conduits in Svalbard glaciers. The Cryosphere, 13, 735–752. https://tc.copernicus.org/articles/13/735/2019/
de Fleurian, B., Morlighem, M., Seroussi, H., Rignot, E., van den Broeke, M. R., Kuipers Munneke, P., et al. (2016). A modeling study of the effect of runoff variability on the effective pressure beneath Russell Glacier, West Greenland. Journal of Geophysical Research: Earth Surface, 121(10), 1834–1848. https://doi.org/10.1002/2016jf003842
Dingman, S. L. (2014). Physical Hydrology (3rd ed.). Waveland Press, Inc.
Doyle, S. H., Hubbard, A., Fitzpatrick, A. A. W., van As, D., Mikkelsen, A. B., Pettersson, R., & Hubbard, B. (2014). Persistent flow acceleration within the interior of the Greenland Ice Sheet. Geophysical Research Letters, 41(3), 899–905. https://doi.org/10.1002/2013gl058933
Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T., Berends, C. J., et al. (2020). GrSMBMIP: Intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice sheet. The Cryosphere, 14(11), 3935–3958. https://doi.org/10.5194/tc-14-3935-2020
Fitzpatrick, A. A. W., Hubbard, A. L., Box, J. E., Quincey, D. J., van As, D., Mikkelsen, A. P. B., et al. (2014). A decade (2002–2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland. The Cryosphere, 8, 107–121. https://doi.org/10.5194/tc-8-107-2014
Flowers, G. E. (2018). Hydrology and the future of the Greenland Ice Sheet. Nature Communications, 9(1), 2729. https://doi.org/10.1038/s41467-018-05002-0
Gleason, C. J., Yang, K., Feng, D., Smith, L. C., Liu, K., Pitcher, L. H., et al. (2021). Hourly surface meltwater routing for a Greenlandic supraglacial catchment across hillslopes and through a dense topological channel network. The Cryosphere, 15(5), 2315–2331. https://doi.org/10.5194/tc-15-2315-2021
Godsey, S. E., & Kirchner, J. W. (2014). Dynamic, discontinuous stream networks: Hydrologically driven variations in active drainage density, flowing channels and stream order. Hydrological Processes, 28(23), 5791–5803. https://doi.org/10.1002/hyp.10310
Goulden, T., Hopkinson, C., Jamieson, R., & Sterling, S. (2014). Sensitivity of watershed attributes to spatial resolution and interpolation method of LiDAR DEMs in three distinct landscapes. Water Resources Research, 50(3), 1908–1927. https://doi.org/10.1002/2013wr013846
Hall, D. K., Cullather, R. I., DiGirolamo, N. E., Comiso, J. C., Medley, B. C., & Nowicki, S. M. (2018). A multilayer surface temperature, surface Albedo, and water vapor product of Greenland from MODIS. Remote Sensing, 10(4), 555. https://doi.org/10.3390/rs10040555
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., & Fettweis, X. (2012). Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature, 491(7423), 240–243. https://doi.org/10.1038/nature11566
Hoffman, M. J., Catania, G. A., Neumann, T. A., Andrews, L. C., & Rumrill, J. A. (2011). Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet. Journal of Geophysical Research, 116(F4). https://doi.org/10.1029/2010jf001934
Holmes, G. W. (1955). Morphology and hydrology of the Mint Julep area, southwest Greenland. In Project Mint Julep Part II (pp. 1–50). Arctic, Desert, Tropic Information Center, Research Studies Institute.
Ignéczi, Á., Sole, A. J., Livingstone, S. J., Ng, F. S. L., & Yang, K. (2018). Greenland Ice Sheet surface topography and drainage structure controlled by the transfer of basal variability. Frontiers in Earth Science, 6, 101. https://doi.org/10.3389/feart.2018.00101
Iken, A., Röthlisberger, H., Flotron, A., & Haeberli, W. (1983). The uplift of Unteraargletscher at the beginning of the melt season—a consequence of water storage at the bed? Journal of Glaciology, 29(101), 28–47. https://doi.org/10.1017/s0022143000005128
Irvine-Fynn, T. D. L., Edwards, A., Stevens, I. T., Mitchell, A. C., Bunting, P., Box, J. E., et al. (2021). Storage and export of microbial biomass across the western Greenland Ice Sheet. Nature Communications, 12(1), 3960. https://doi.org/10.1038/s41467-021-24040-9
Karlstrom, L., & Yang, K. (2016). Fluvial supraglacial landscape evolution on the Greenland Ice Sheet. Geophysical Research Letters, 43, 2683–2692. https://doi.org/10.1002/2016gl067697
King, L., Hassan, M., Yang, K., & Flowers, G. (2016). Flow routing for delineating supraglacial meltwater channel networks. Remote Sensing, 8(12), 988. https://doi.org/10.3390/rs8120988
Knighton, A. D. (1985). Channel form adjustment in supraglacial streams, Austre Okstindbreen, Norway. Arctic and Alpine Research, 17(4), 451–466. https://doi.org/10.2307/1550870
Koziol, C. P., & Arnold, N. (2018). Modelling seasonal meltwater forcing of the velocity of land-terminating margins of the Greenland Ice Sheet. The Cryosphere, 12(3), 971–991. https://doi.org/10.5194/tc-12-971-2018
Lampkin, D. J., & VanderBerg, J. (2014). Supraglacial melt channel networks in the Jakobshavn Isbræ region during the 2007 melt season. Hydrological Processes, 28(25), 6038–6053. https://doi.org/10.1002/hyp.10085
Leeson, A. A., Shepherd, A., Palmer, S., Sundal, A., & Fettweis, X. (2012). Simulating the growth of supraglacial lakes at the western margin of the Greenland Ice Sheet. The Cryosphere, 6(5), 1077–1086. https://doi.org/10.5194/tc-6-1077-2012
Lefebre, F., Gallée, H., van Ypersele, J.-P., & Greuell, W. (2003). Modeling of snow and ice melt at ETH Camp (west Greenland): A study of surface albedo. Journal of Geophysical Research: Atmospheres, 108(4231). https://doi.org/10.1029/2001jd001160
Lindsay, J. B. (2016). Efficient hybrid breaching-filling sink removal methods for flow path enforcement in digital elevation models. Hydrological Processes, 30(6), 846–857. https://doi.org/10.1002/hyp.10648
Lu, Y., Yang, K., Lu, X., Smith, L. C., Sole, A. J., Livingstone, S. J., et al. (2020). Diverse supraglacial drainage patterns on the Devon Ice Cap, Arctic Canada. Journal of Maps, 16(2), 834–846. https://doi.org/10.1080/17445647.2020.1838353
Marston, R. A. (1983). Supraglacial stream dynamics on the Juneau icefield. Annals of the Association of American Geographers, 73(4), 597–608. https://doi.org/10.1111/j.1467-8306.1983.tb01861.x
McGrath, D., Colgan, W., Steffen, K., Lauffenburger, P., & Balog, J. (2011). Assessing the summer water budget of a Moulin basin in the Sermeq Avannarleq ablation region, Greenland Ice Sheet. Journal of Glaciology, 57(205), 954–964. https://doi.org/10.3189/002214311798043735
McMaster, K. J. (2002). Effects of digital elevation model resolution on derived stream network positions. Water Resources Research, 38(4). 13-11-13-18. https://doi.org/10.1029/2000wr000150
Mikkelsen, A. B., Hubbard, A., MacFerrin, M., Box, J. E., Doyle, S. H., Fitzpatrick, A., et al. (2016). Extraordinary runoff from the Greenland Ice Sheet in 2012 amplified by hypsometry and depleted firn retention. The Cryosphere, 10(3), 1147–1159. https://doi.org/10.5194/tc-10-1147-2016
Miller, J. R., Russell, G. L., & Caliri, G. (1994). Continental-scale river flow in climate models. Journal of Climate, 7(6), 914–928. https://doi.org/10.1175/1520-0442(1994)007<0914:csrfic>2.0.co;2
Montgomery, D. R., & Dietrich, W. E. (1989). Source areas, drainage density, and channel initiation. Water Resources Research, 25(8), 1907–1918. https://doi.org/10.1029/wr025i008p01907
Muthyala, R., Rennermalm, A. K., Leidman, S. Z., Cooper, M. G., Cooley, S. W., Smith, L. C., & van As, D. (2020). Seasonal variability in in-situ supraglacial streamflow and drivers in southwest Greenland in 2016. The Cryosphere Discussions, 1–28. https://doi.org/10.5194/tc-2020-314
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K., et al. (2012). The extreme melt across the Greenland Ice Sheet in 2012. Geophysical Research Letters, 39(20), L20502. https://doi.org/10.1029/2012gl053611
Pitcher, L. H., & Smith, L. C. (2019). Supraglacial streams and rivers. Annual Review of Earth and Planetary Sciences, 47, 421–452. https://doi.org/10.1146/annurev-earth-053018-060212
Pitcher, L. H., Smith, L. C., Gleason, C. J., & Yang, K. (2016). CryoSheds: A GIS modeling framework for delineating land-ice watersheds for the Greenland ice sheet. GIScience & Remote Sensing, 53(6), 707–722. https://doi.org/10.1080/15481603.2016.1230084
Poinar, K., & Andrews, L. C. (2021). Challenges in predicting Greenland supraglacial lake drainages at the regional scale. The Cryosphere, 15, 1455–1483.
Poinar, K., Joughin, I., Das, S. B., Behn, M. D., Lenaerts, J. T. M., & van den Broeke, M. R. (2015). Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland. Geophysical Research Letters, 42, 1800–1807. https://doi.org/10.1002/2015gl063192
Prancevic, J. P., & Kirchner, J. W. (2019). Topographic controls on the extension and retraction of flowing streams. Geophysical Research Letters, 46(4), 2084–2092. https://doi.org/10.1029/2018gl081799
Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P. P., Koster, R. D., & Lannoy, G. J. M. D. (2017). Assessment of MERRA-2 land surface hydrology estimates. Journal of Climate, 30(8), 2937–2960. https://doi.org/10.1175/jcli-d-16-0720.1
Rippin, D. M., Pomfret, A., & King, N. (2015). High resolution mapping of supra-glacial drainage pathways reveals link between micro-channel drainage density, surface roughness and surface reflectance. Earth Surface Processes and Landforms, 40(10), 1279–1290. https://doi.org/10.1002/esp.3719
Ryan, J. C., Smith, L. C., van As, D., Cooley, S. W., Cooper, M. G., Pitcher, L. H., & Hubbard, A. (2019). Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Science Advances, 5(3), eaav3738. https://doi.org/10.1126/sciadv.aav3738
Schneider, A., Jost, A., Coulon, C., Silvestre, M., Théry, S., & Ducharne, A. (2017). Global-scale river network extraction based on high-resolution topography and constrained by lithology, climate, slope, and observed drainage density. Geophysical Research Letters, 44(6), 2773–2781. https://doi.org/10.1002/2016gl071844
Schoof, C. (2010). Ice-sheet acceleration driven by melt supply variability. Nature, 468, 803–806. https://doi.org/10.1038/nature09618
Shepherd, A., Hubbard, A., Nienow, P., King, M., McMillan, M., & Joughin, I. (2009). Greenland Ice Sheet motion coupled with daily melting in late summer. Geophysical Research Letters, 36(1), L01501. https://doi.org/10.1029/2008gl035758
Smith, L. C., Andrews, L. C., Pitcher, L. H., Overstreet, B. T., Rennermalm, Å. K., Cooper, M. G., et al. (2021). Supraglacial River forcing of subglacial water storage and diurnal ice sheet motion. Geophysical Research Letters, 48(7), e2020GL091418. https://doi.org/10.1029/2020gl091418
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H., Rennermalm, A. K., et al. (2015). Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland Ice Sheet. Proceedings of the National Academy of Sciences, 112(4), 1001–1006. https://doi.org/10.1073/pnas.1413024112
Smith, L. C., Yang, K., Pitcher, L. H., Brandon, T. O., Chu, V. W., Rennermalm, A. K., et al. (2017). Direct measurements of meltwater runoff on the Greenland Ice Sheet Surface. Proceedings of the National Academy of Sciences, 114(50), E10622–E10631. https://doi.org/10.1073/pnas.1707743114
Sneed, W. A., & Hamilton, G. S. (2007). Evolution of melt pond volume on the surface of the Greenland Ice Sheet. Geophysical Research Letters, 34(3), L03501. https://doi.org/10.1029/2006gl028697
Steger, C. R., Reijmer, C. H., van den Broeke, M. R., Wever, N., Forster, R. R., Koenig, L. S., et al. (2017). Firn meltwater retention on the Greenland Ice Sheet: A model comparison. Frontiers in Earth Science, 5(3). https://doi.org/10.3389/feart.2017.00003
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., & Huybrechts, P. (2009). Evolution of supra-glacial lakes across the Greenland Ice Sheet. Remote Sensing of Environment, 113(10), 2164–2171. https://doi.org/10.1016/j.rse.2009.05.018
Tarboton, D. G., Bras, R. L., & Rodrigueziturbe, I. (1991). On the extraction of channel networks from digital elevation data. Hydrological Processes, 5(1), 81–100. https://doi.org/10.1002/hyp.3360050107
Tedesco, M., Fettweis, X., Mote, T., Wahr, J., Alexander, P., Box, J. E., & Wouters, B. (2013). Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. The Cryosphere, 7(2), 615–630. https://doi.org/10.5194/tc-7-615-2013
Tucker, G. E., & Bras, R. L. (1998). Hillslope processes, drainage density, and landscape morphology. Water Resources Research, 34(10), 2751–2764. https://doi.org/10.1029/98wr01474
van Meerveld, H. J. I., Kirchner, J. W., Vis, M. J. P., Assendelft, R. S., & Seibert, J. (2019). Expansion and contraction of the flowing stream network alter hillslope flowpath lengths and the shape of the travel time distribution. Hydrology and Earth System Sciences, 23(11), 4825–4834. https://doi.org/10.5194/hess-23-4825-2019
Vernon, C. L., Bamber, J. L., Box, J. E., van den Broeke, M. R., Fettweis, X., Hanna, E., & Huybrechts, P. (2013). Surface mass balance model intercomparison for the Greenland Ice Sheet. The Cryosphere, 7(2), 599–614. https://doi.org/10.5194/tc-7-599-2013
Yang, K., Karlstrom, L., Smith, L. C., & Li, M. (2017). Automated high resolution satellite image registration using supraglacial rivers on the Greenland Ice Sheet. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(3), 845–856. https://doi.org/10.1109/jstars.2016.2617822
Yang, K., & Smith, L. C. (2013). Supraglacial streams on the Greenland Ice Sheet delineated from combined spectral-shape information in high-resolution satellite imagery. IEEE Geoscience and Remote Sensing Letters, 10(4), 801–805. https://doi.org/10.1109/lgrs.2012.2224316
Yang, K., & Smith, L. C. (2016). Internally drained catchments dominate supraglacial hydrology of the southwest Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface, 121, 1891–1910. https://doi.org/10.1002/2016jf003927
Yang, K., Smith, L. C., Cooper, M. G., Pitcher, L. H., van As, D., Lu, Y., et al. (2021). Seasonal evolution of supraglacial lakes and rivers on the southwest Greenland Ice Sheet. Journal of Glaciology, 67(264), 592–602. https://doi.org/10.1017/jog.2021.10
Yang, K., Smith, L. C., Fettweis, X., Gleason, C. J., Lu, Y., & Li, M. C. (2019). Surface meltwater runoff on the Greenland Ice Sheet estimated from remotely sensed supraglacial lake infilling rate. Remote Sensing of Environment, 234, 111459. https://doi.org/10.1016/j.rse.2019.111459
Yang, K., Smith, L. C., Karlstrom, L., Cooper, M. G., Tedesco, M., As, D. v., et al. (2018). A new surface meltwater routing model for use on the Greenland Ice Sheet surface. The Cryosphere, 12(12), 3791–3811. https://doi.org/10.5194/tc-12-3791-2018
Yang, K., Smith, L. C., Sole, A., Livingstone, S. J., Cheng, X., Chen, Z., & Li, M. (2019). Supraglacial rivers on the northwest Greenland Ice Sheet, Devon Ice Cap, and Barnes Ice Cap mapped using Sentinel-2 imagery. International Journal of Applied Earth Observation and Geoinformation, 78, 1–13. https://doi.org/10.1016/j.jag.2019.01.008
Yang, K., Sommers, A., Andrews, L. C., Smith, L. C., Lu, X., Fettweis, X., & Li, M. (2020). Intercomparison of surface meltwater routing models for the Greenland Ice Sheet and influence on subglacial effective pressures. The Cryosphere, 14(10), 3349–3365. https://doi.org/10.5194/tc-14-3349-2020
Yang, P., Ames, D. P., Fonseca, A., Anderson, D., Shrestha, R., Glenn, N. F., & Cao, Y. (2014). What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results? Environmental Modelling & Software, 58, 48–57. https://doi.org/10.1016/j.envsoft.2014.04.005
Zhang, W., & Montgomery, D. R. (1994). Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resources Research, 30(4), 1019–1028. https://doi.org/10.1029/93wr03553
Zuo, Z., & Oerlemans, J. (1996). Modelling albedo and specific balance of the Greenland Ice Sheet: Calculations for the Søndre Strømfjord transect. Journal of Glaciology, 42(141), 305–317. https://doi.org/10.1017/s0022143000004160
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.