[en] Islet endothelial cells produce paracrine factors important for islet beta-cell function and survival. Under conditions of type 2 diabetes, islet endothelial cells exhibit a dysfunctional phenotype including increased expression of genes involved in cellular adhesion and inflammation. We sought to determine whether treatment of hyperglycemia with the sodium glucose co-transporter 2 inhibitor empagliflozin, either alone or in combination with metformin, would improve markers of endothelial cell function in islets, assessed ex vivo, and if such an improvement is associated with improved insulin secretion in a mouse model of diabetes in vivo. For these studies, db/db diabetic mice and non-diabetic littermate controls were treated for 6 weeks with empagliflozin or metformin, either alone or in combination. For each treatment group, expression of genes indicative of islet endothelial dysfunction was quantified. Islet endothelial and beta-cell area was assessed by morphometry of immunochemically stained pancreas sections. Measurements of plasma glucose and insulin secretion during an intravenous glucose tolerance test were performed on vehicle and drug treated diabetic animals. We found that expression of endothelial dysfunction marker genes is markedly increased in diabetic mice. Treatment with either empagliflozin or metformin lowered expression of the dysfunction marker genes ex vivo, which correlated with improved glycemic control, and increased insulin release in vivo. Empagliflozin treatment was more effective than metformin alone, with a combination of the two drugs demonstrating the greatest effects. Improving islet endothelial function through strategies such as empagliflozin/metformin treatment may provide an effective approach for improving insulin release in human type 2 diabetes.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
Hogan, Meghan F.; University of Washington - UW > Department of Medicine > Division of Metabolism, Endocrinology and Nutrition
Hackney, Daryl J.
Aplin, Alfred C.
Mundinger, Thomas O.
Larmore, Megan J.
Castillo, Joseph J.
Esser, Nathalie ; University of Washington - UW > Department of Medicine > Division of Metabolism, Endocrinology and Nutrition
Zraika, Sakeneh; University of Washington - UW > Department of Medicine > Division of Metabolism, Endocrinology and Nutrition
Hull, Rebecca L.; University of Washington - UW > Department of Medicine > Division of Metabolism, Endocrinology and Nutrition
Language :
English
Title :
SGLT2-i improves markers of islet endothelial cell function in db/db diabetic mice.
Ayala JE, Bracy DP, Mcguinness OP & Wasserman DH 2006 Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes 55 390-397. (https://doi. org/10.2337/diabetes.55.02.06.db05-0686)
Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI, Wasserman DH, Mcguinness OP & Consortium NIHMMPC 2010 Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease Models and Mechanisms 3 525-534. (https://doi.org/10.1242/dmm.006239)
Brissova M, Shostak A, Fligner CL, Revetta FL, Washington MK, Powers AC & Hull RL 2015 Human islets have fewer blood vessels than mouse islets and the density of islet vascular structures is increased in type 2 diabetes. Journal of Histochemistry and Cytochemistry 63 637-645. (https://doi.org/10.1369/0022155415573324)
Brownlee M 2005 The pathobiology of diabetic complications: A unifying mechanism. Diabetes 54 1615-1625. (https://doi.org/10.2337/diabetes.54.6.1615)
DCCT Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L & Siebert C 1993 The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England Journal of Medicine 329 977-986. (https://doi.org/10.1056/NEJM199309303291401)
Ganbaatar B, Fukuda D, Shinohara M, Yagi S, Kusunose K, Yamada H, Soeki T, Hirata KI & Sata M 2020 Empagliflozin ameliorates endothelial dysfunction and suppresses atherogenesis in diabetic apolipoprotein E-deficient mice. European Journal of Pharmacology 875 173040. (https://doi.org/10.1016/j.ejphar.2020.173040)
Hadjadj S, Rosenstock J, Meinicke T, Woerle HJ & Broedl UC 2016 Initial combination of empagliflozin and metformin in patients with type 2 diabetes. Diabetes Care 39 1718-1728. (https://doi.org/10.2337/dc16- 0522)
Hogan MF & Hull RL 2017 The islet endothelial cell: A novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia 60 952-959. (https://doi.org/10.1007/s00125-017-4272-9)
Hogan MF, Liu AW, Peters MJ, Willard JR, Rabbani Z, Bartholomew EC, Ottley A & Hull RL 2017 Markers of islet endothelial dysfunction occur in male B6.BKS(D)-Leprdb/J mice and may contribute to reduced insulin release. Endocrinology 158 293-303. (https://doi. org/10.1210/en.2016-1393)
Horie K, Miyata T, Maeda K, Miyata S, Sugiyama S, Sakai H, Van Ypersole De Strihou C, Monnier VM, Witztum JL & Kurokawa K 1997 Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. Journal of Clinical Investigation 100 2995-3004. (https://doi.org/10.1172/JCI119853)
Hummel KP, Coleman DL & Lane PW 1972 The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains. Biochemical Genetics 7 1-13. (https://doi.org/10.1007/BF00487005)
Johansson M, Mattsson G, Andersson A, Jansson L & Carlsson PO 2006 Islet endothelial cells and pancreatic beta-cell proliferation: Studies in vitro and during pregnancy in adult rats. Endocrinology 147 2315-2324. (https://doi.org/10.1210/en.2005-0997)
Johansson A, Lau J, Sandberg M, Borg LA, Magnusson PU & Carlsson PO 2009 Endothelial cell signalling supports pancreatic beta cell function in the rat. Diabetologia 52 2385-2394. (https://doi.org/10.1007/s00125-009-1485-6)
Kado S, Wakatsuki T, Yamamoto M & Nagata N 2001 Expression of intercellular adhesion molecule-1 induced by high glucose concentrations in human aortic endothelial cells. Life Sciences 68 727-737. (https://doi.org/10.1016/s0024-3205(00)00968-1)
Lacraz G, Giroix MH, Kassis N, Coulaud J, Galinier A, Noll C, Cornut M, Schmidlin F, Paul JL, Janel N, et al. 2009 Islet endothelial activation and oxidative stress gene expression is reduced by IL-1RA treatment in the type 2 diabetic GK rat. PLoS ONE 4 e6963. (https://doi. org/10.1371/journal.pone.0006963)
Li CY, Wang LX, Dong SS, Hong Y, Zhou XH, Zheng WW & Zheng C 2018 Phlorizin exerts direct protective effects on palmitic acid (PA)-induced endothelial dysfunction by activating the PI3K/AKT/eNOS signaling pathway and increasing the levels of nitric oxide (NO). Medical Science Monitor Basic Research 24 1-9. (https://doi. org/10.12659/msmbr.907775)
Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 402-408. (https://doi.org/10.1006/meth.2001.1262)
Lupi R, Del Guerra S, Tellini C, Giannarelli R, Coppelli A, Lorenzetti M, Carmellini M, Mosca F, Navalesi R & Marchetti P 1999 The biguanide compound metformin prevents desensitization of human pancreatic islets induced by high glucose. European Journal of Pharmacology 364 205-209. (https://doi.org/10.1016/s0014-2999(98)00807-3)
Lupi R, Del Guerra S, Fierabracci V, Marselli L, Novelli M, Patane G, Boggi U, Mosca F, Piro S, Del Prato S, et al. 2002 Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes 51 (Supplement 1) S134-S137. (https://doi.org/10.2337/diabetes.51.2007.s134)
Lytrivi M, Castell AL, Poitout V & Cnop M 2020 Recent insights into mechanisms of beta-cell lipo- and glucolipotoxicity in type 2 diabetes. Journal of Molecular Biology 432 1514-1534. (https://doi.org/10.1016/j. jmb.2019.09.016)
Maiti R & Agrawal NK 2007 Atherosclerosis in diabetes mellitus: Role of inflammation. Indian Journal of Medical Sciences 61 292-306. (https://doi.org/10.4103/0019-5359.32098)
Majewski C & Bakris GL 2015 Blood pressure reduction: An added benefit of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes. Diabetes Care 38 429-430. (https://doi.org/10.2337/dc14- 1596)
Nakamura M, Kitamura H, Konishi S, Nishimura M, Ono J, Ina K, Shimada T & Takaki R 1995 The endocrine pancreas of spontaneously diabetic db/db mice: Microangiopathy as revealed by transmission electron microscopy. Diabetes Research and Clinical Practice 30 89-100. (https://doi.org/10.1016/0168-8227(95)01155-2)
Nauck MA, Del Prato S, Meier JJ, Duran-Garcia S, Rohwedder K, Elze M & Parikh SJ 2011 Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: A randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 34 2015-2022. (https://doi.org/10.2337/dc11-0606)
Olsson R & Carlsson PO 2006 The pancreatic islet endothelial cell: Emerging roles in islet function and disease. International Journal of Biochemistry and Cell Biology 38 492-497. (https://doi.org/10.1016/j. biocel.2005.06.021)
Patane G, Piro S, Rabuazzo AM, Anello M, Vigneri R & Purrello F 2000 Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: A direct metformin effect on pancreatic beta-cells. Diabetes 49 735-740. (https://doi.org/10.2337/diabetes.49.5.735)
Peiris H, Bonder CS, Coates PT, Keating DJ & Jessup CF 2014 The beta-cell/EC axis: How do islet cells talk to each other? Diabetes 63 3-11. (https://doi.org/10.2337/db13-0617)
Piconi L, Quagliaro L, Da Ros R, Assaloni R, Giugliano D, Esposito K, Szabo C & Ceriello A 2004 Intermittent high glucose enhances ICAM-1, VCAM-1, E-selectin and interleukin-6 expression in human umbilical endothelial cells in culture: The role of poly(ADP-ribose) polymerase. Journal of Thrombosis and Haemostasis 2 1453-1459. (https://doi.org/10.1111/j.1538-7836.2004.00835.x)
Richards OC, Raines SM & Attie AD 2010 The role of blood vessels, endothelial cells, and vascular pericytes in insulin secretion and peripheral insulin action. Endocrine Reviews 31 343-363. (https://doi. org/10.1210/er.2009-0035)
Saponaro C, Muhlemann M, Acosta-Montalvo A, Piron A, Gmyr V, Delalleau N, Moerman E, Thevenet J, Pasquetti G, Coddeville A, et al. 2020 Interindividual heterogeneity of SGLT2 expression and function in human pancreatic islets. Diabetes 69 902-914. (https://doi.org/10.2337/db19-0888)
Shah P, Lueschen N, Ardestani A, Oberholzer J, Olerud J, Carlsson PO & Maedler K 2016 Angiopoetin-2 signals do not mediate the hypervascularization of islets in type 2 diabetes. PLoS ONE 11 e0161834. (https://doi.org/10.1371/journal.pone.0161834)
Shao J, Iwashita N, Ikeda F, Ogihara T, Uchida T, Shimizu T, Uchino H, Hirose T, Kawamori R & Watada H 2006 Beneficial effects of candesartan, an angiotensin II type 1 receptor blocker, on beta-cell function and morphology in db/db mice. Biochemical and Biophysical Research Communications 344 1224-1233. (https://doi.org/10.1016/j. bbrc.2006.04.011)
Shi Y & Vanhoutte PM 2017 Macro- and microvascular endothelial dysfunction in diabetes. Journal of Diabetes 9 434-449. (https://doi. org/10.1111/1753-0407.12521)
Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB & Vlassara H 1997 Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. American Journal of Pathology 150 523-531.
Windelov JA, Pedersen J & Holst JJ 2016 Use of anesthesia dramatically alters the oral glucose tolerance and insulin secretion in C57BL/6 mice. Physiological Reports 4 e12824. (https://doi.org/10.14814/phy2.12824)
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, et al. 2015 Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. New England Journal of Medicine 373 2117-2128. (https://doi. org/10.1056/NEJMoa1504720)
Zraika S, Hull RL, Udayasankar J, Utzschneider KM, Tong J, Gerchman F & Kahn SE 2007 Glucose- and time-dependence of islet amyloid formation in vitro. Biochemical and Biophysical Research Communications 354 234-239. (https://doi.org/10.1016/j. bbrc.2006.12.187)