[en] Seafood has great ecological and nutritional value for human and wildlife communities. However, accumulation of mercury (Hg) in fish is a concern to animal and human health. There is a crucial need to understand Hg speciation in marine organisms through controlled feeding experiments. This study represents a first assessment of the biological processes that may influence Hg bioaccumulation and dynamics in a marine predatory fish. We conducted a feeding experiment to investigate the dynamics of MeHg and iHg, as well as Hg isotopes in the liver and muscles of captive juvenile seabass (Dicentrarchus labrax). Three groups of juvenile seabass were fed in captivity during 3 weeks of acclimatization and 6 weeks of experiment. Each group was fed with pellets containing environmentally relevant MeHg concentrations (Control, 200 and 500 ng g-1 dw). We monitored the evolution of MeHg and iHg concentrations as well as Hg isotopic values in liver and muscle. We determined Hg dynamics of with respect to the contamination level in the fish diet. Muscle δ202Hg and Δ199Hg turnover rates ranged between 33 and 14 days (Low diet) to 5 and 9 days (Mod diet). Liver δ202Hg and Δ199Hg turnover rates ranged between 3 and 7 days (Low diet) to 3 and 2 days (Mod diet), respectively. Hg species concentrations and δ202Hg varied over time between diet groups and tissues, showing the occurrence of internal mass-dependent fractionation (MDF). No significant intra-tissue and temporal Hg mass-independent fractionation (MIF) was observed. The results of our experiment are strongly in favor of the existence of MeHg demethylation in a coastal predatory fish exposed to low to moderate concentrations of environmental Hg. The decrease over time of δ202Hg in muscle of seabass from the most contaminated diet was accompanied by a temporal increase in iHg, pointing to possible Hg detoxification processes occurring in this tissue when dietary Hg exposure is high. The absence of Hg MDF and different turnover between muscle and liver in seabass exposed to 500 ng Hg g-1 confirmed that Hg speciation and bioaccumulation in juvenile fish are controlled by Hg levels and speciation in their diet.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Environmental sciences & ecology
Author, co-author :
Pinzone, Marianna ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique
Cransveld, Alice
De Boeck, Gudrun
Shrivastava, Jyotsna
Tessier, Emmanuel
Bérail, Sylvain
Schnitzler, Joseph
Amouroux, David
Das, Krishna ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique
Language :
English
Title :
Dynamics of dietary mercury determined by mercury speciation and isotopic composition in Dicentrarchus labrax
Publication date :
2022
Journal title :
Frontiers in Environmental Chemistry
eISSN :
2673-4486
Special issue title :
Advances in Metals and Trace Elements Isotopes Measurements, Experiments and Application in Environmental Sciences
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ajsuvakova O. P. Tinkov A. A. Aschner M. Rocha J. B. T. Michalke B. Skalnaya M. G. et al. (2020). Sulfhydryl Groups as Targets of Mercury Toxicity. Coord. Chem. Rev. 417, 213343. 10.1016/j.ccr.2020.213343
Bergquist B. A. Blum J. D. (2007). Mass-Dependent and -Independent Fractionation of Hg Isotopes by Photoreduction in Aquatic Systems. Science 318, 417–420. 10.1126/science.1148050
Bergquist B. A. Blum J. D. (2009). The Odds and Evens of Mercury Isotopes: Applications of Mass-dependent and Mass-independent Isotope Fractionation. Elements 5, 353–357. 10.2113/gselements.5.6.353
Bolea-Fernandez E. Rua-Ibarz A. Krupp E. M. Feldmann J. Vanhaecke F. (2019). High-precision Isotopic Analysis Sheds New Light on Mercury Metabolism in Long-Finned Pilot Whales (Globicephala melas). Sci. Rep. 9, 7262. 10.1038/s41598-019-43825-z
Bridges C. C. Zalups R. K. (2010). Transport of Inorganic Mercury and Methylmercury in Target Tissues and Organs. J. Toxicol. Environ. Health B 13, 385–410. 10.1080/10937401003673750
Clémens S. Monperrus M. Donard O. F. X. Amouroux D. Guérin T. (2011). Mercury Speciation Analysis in Seafood by Species-specific Isotope Dilution: Method Validation and Occurrence Data. Anal. Bioanal. Chem. 401, 2699–2711. 10.1007/s00216-011-5040-1
Cransveld A. Amouroux D. Tessier E. Koutrakis E. Ozturk A. A. Bettoso N. et al. (2017). Mercury Stable Isotopes Discriminate Different Populations of European Seabass and Trace Potential Hg Sources Around Europe. Environ. Sci. Technol. 51, 12219–12228. 10.1021/acs.est.7b01307
Du B. Yin R. Fu X. Li P. Feng X. Maurice L. (2021). Use of Mercury Isotopes to Quantify Sources of Human Inorganic Mercury Exposure and Metabolic Processes in the Human Body. Environ. Int. 147, 106336. 10.1016/j.envint.2020.106336
Feng C. Pedrero Z. Gentès S. Barre J. Renedo M. Tessier E. et al. (2015). Specific Pathways of Dietary Methylmercury and Inorganic Mercury Determined by Mercury Speciation and Isotopic Composition in Zebrafish (Danio rerio). Environ. Sci. Technol. 49, 12984–12993. 10.1021/acs.est.5b03587
Gantner N. Hintelmann H. Zheng W. Muir D. C. (2009). Variations in Stable Isotope Fractionation of Hg in Food Webs of Arctic Lakes. Environ. Sci. Technol. 43, 9148–9154. 10.1021/es901771r
Gentès S. Maury-Brachet R. Feng C. Pedrero Z. Tessier E. Legeay A. et al. (2015). Specific Effects of Dietary Methylmercury and Inorganic Mercury in Zebrafish (Danio rerio) Determined by Genetic, Histological, and Metallothionein Responses. Environ. Sci. Technol. 49, 14560–14569. 10.1021/acs.est.5b03586
Gonzalez P. Dominique Y. Massabuau J. C. Boudou A. Bourdineaud J. P. (2005). Comparative Effects of Dietary Methylmercury on Gene Expression in Liver, Skeletal Muscle, and Brain of the Zebrafish (Danio rerio). Environ. Sci. Technol. 39, 3972–3980. 10.1021/es0483490
Kwon S. Y. Blum J. D. Carvan M. J. Basu N. Head J. A. Madenjian C. P. et al. (2012). Absence of Fractionation of Mercury Isotopes during Trophic Transfer of Methylmercury to Freshwater Fish in Captivity. Environ. Sci. Technol. 46, 7527–7534. 10.1021/es300794q
Kwon S. Y. Blum J. D. Chen C. Y. Meattey D. E. Mason R. P. (2014). Mercury Isotope Study of Sources and Exposure Pathways of Methylmercury in Estuarine Food Webs in the Northeastern U.S. Environ. Sci. Technol. 48, 10089–10097. 10.1021/es5020554
Kwon S. Y. Blum J. D. Chirby M. A. Chesney E. J. (2013). Application of Mercury Isotopes for Tracing Trophic Transfer and Internal Distribution of Mercury in marine Fish Feeding Experiments. Environ. Toxicol. Chem. 32, 2322–2330. 10.1002/etc.2313
Kwon S. Y. Blum J. D. Madigan D. J. Block B. A. Popp B. N. (2016). Quantifying Mercury Isotope Dynamics in Captive Pacific Bluefin Tuna (Thunnus Orientalis). Elem. Sci. Anthr. 4, 000088. 10.12952/journal.elementa.000088
Li M. Juang C. A. Ewald J. D. Yin R. Mikkelsen B. Krabbenhoft D. P. et al. (2020). Selenium and Stable Mercury Isotopes Provide New Insights into Mercury Toxicokinetics in Pilot Whales. Sci. Total Environ. 710, 136325. 10.1016/j.scitotenv.2019.136325
MacAvoy S. E. Arneson L. S. Bassett E. (2006). Correlation of Metabolism with Tissue Carbon and Nitrogen Turnover Rate in Small Mammals. Oecologia 150, 190–201. 10.1007/s00442-006-0522-0
Madigan D. J. Litvin S. Y. Popp B. N. Carlisle A. B. Farwell C. J. Block B. A. (2012). Tissue Turnover Rates and Isotopic Trophic Discrimination Factors in the Endothermic Teleost, Pacific Bluefin Tuna (Thunnus Orientalis). PLoS One 7, e49220. 10.1371/journal.pone.0049220
Man Y. Yin R. Cai K. Qin C. Wang J. Yan H. et al. (2019). Primary Amino Acids Affect the Distribution of Methylmercury rather Than Inorganic Mercury Among Tissues of Two Farmed-Raised Fish Species. Chemosphere 225, 320–328. 10.1016/j.chemosphere.2019.03.058
Mieiro C. L. Pacheco M. Pereira M. E. Duarte A. C. (2011). Mercury Organotropism in Feral European Sea Bass (Dicentrarchus labrax). Arch. Environ. Contam. Toxicol. 61, 135–143. 10.1007/s00244-010-9591-5
Nakazawa E. Ikemoto T. Hokura A. Terada Y. Kunito T. Tanabe S. et al. (2011). The Presence of Mercury Selenide in Various Tissues of the Striped Dolphin: Evidence from μ-XRF-XRD and XAFS Analyses. Metallomics 3, 719–725. 10.1039/c0mt00106f
Obrist D. Kirk J. L. Zhang L. Sunderland E. M. Jiskra M. Selin N. E. (2018). A Review of Global Environmental Mercury Processes in Response to Human and Natural Perturbations: Changes of Emissions, Climate, and Land Use. Ambio 47, 116–140. 10.1007/s13280-017-1004-9
Pentreath R. J. (1976). The Accumulation of Mercury from Food by the Plaice, Pleuronectes Platessa L. J. Exp. Mar. Biol. Ecol. 25, 51–65. 10.1016/0022-0981(76)90075-7
Perrot V. Masbou J. Pastukhov M. V. Epov V. N. Point D. Bérail S. et al. (2015). Natural Hg Isotopic Composition of Different Hg Compounds in Mammal Tissues as a Proxy for In Vivo Breakdown of Toxic Methylmercury. Metallomics 8, 170–178. 10.1039/c5mt00286a
Perrot V. Epov V. N. Pastukhov M. V. Grebenshchikova V. I. Zouiten C. Sonke J. E. et al. (2010). Tracing Sources and Bioaccumulation of Mercury in Fish of Lake Baikal− Angara River Using Hg Isotopic Composition. Environ. Sci. Technol. 44, 8030–8037. 10.1021/es101898e
Perrot V. Pastukhov M. V. Epov V. N. Husted S. Donard O. F. X. Amouroux D. (2012). Higher Mass-independent Isotope Fractionation of Methylmercury in the Pelagic Food Web of Lake Baikal (Russia). Environ. Sci. Technol. 46, 5902–5911. 10.1021/es204572g
Pinzone M. Cransveld A. Tessier E. Bérail S. Schnitzler J. Das K. et al. (2021). Contamination Levels and Habitat Use Influence Hg Stable Isotopes and Accumulation in the European Seabass Dicentrarchus labrax. Environ. Pollut. 281, 117008. 10.1016/j.envpol.2021.117008
Queipo-Abad S. Pedrero Z. Marchán-Moreno C. El Hanafi K. Bérail S. Corns W. T. et al. (2022). New Insights into the Biomineralization of Mercury Selenide Nanoparticles through Stable Isotope Analysis in Giant Petrel Tissues. J. Hazard. Mater. 425, 127922. 10.1016/j.jhazmat.2021.127922
Renedo M. Pedrero Z. Amouroux D. Cherel Y. Bustamante P. (2021). Mercury Isotopes of Key Tissues Document Mercury Metabolic Processes in Seabirds. Chemosphere 263, 127777. 10.1016/j.chemosphere.2020.127777
Rodríguez Martín-Doimeadios R. C. Berzas Nevado J. J. Guzmán Bernardo F. J. Jiménez Moreno M. Arrifano G. P. Herculano A. M. et al. (2014). Comparative Study of Mercury Speciation in Commercial Fishes of the Brazilian Amazon. Environ. Sci. Pollut. Res. Int. 21, 7466–7479. 10.1007/s11356-014-2680-7
Royes J.-A. Chapman F. (2003). Preparing Your Own Fish Feeds. EDIS 2003, 9. 10.32473/edis-fa097-2003
Selin N. E. (2009). Global Biogeochemical Cycling of Mercury: A Review. Annu. Rev. Environ. Resour. 34, 43–63. 10.1146/annurev.environ.051308.084314
Senn D. B. Chesney E. J. Blum J. D. Bank M. S. Maage A. Shine J. P. (2010). Stable Isotope (N, C, Hg) Study of Methylmercury Sources and Trophic Transfer in the Northern Gulf of Mexico. Environ. Sci. Technol. 44, 1630–1637. 10.1021/es902361j
Sherman L. S. Blum J. D. Franzblau A. Basu N. (2013). New Insight into Biomarkers of Human Mercury Exposure Using Naturally Occurring Mercury Stable Isotopes. Environ. Sci. Technol. 47, 3403–3409. 10.1021/es305250z
Tieszen L. L. Boutton T. W. Tesdahl K. G. Slade N. A. (1983). Fractionation and Turnover of Stable Carbon Isotopes in Animal Tissues: Implications for ?13C Analysis of Diet. Oecologia 57, 32–37. 10.1007/bf00379558
Tsui M. T.-K. Blum J. D. Kwon S. Y. (2020). Review of Stable Mercury Isotopes in Ecology and Biogeochemistry. Sci. Total Environ. 716, 135386. 10.1016/j.scitotenv.2019.135386
Tsui M. T. K. Blum J. D. Kwon S. Y. Finlay J. C. Balogh S. J. Nollet Y. H. (2012). Sources and Transfers of Methylmercury in Adjacent River and forest Food Webs. Environ. Sci. Technol. 46, 10957–10964. 10.1021/es3019836
UNEP (2002). Global Mercury Assessment. Geneva: United Nation Environment Programme Chemical Branch.
UNEP (2013). Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. Geneva: United Nation Environment Programme Chemical Branch.
Vander Zanden M. J. Clayton M. K. Moody E. K. Solomon C. T. Weidel B. C. (2015). Stable Isotope Turnover and Half-Life in Animal Tissues: A Literature Synthesis. PLoS One 10, e0116182–16. 10.1371/journal.pone.0116182
Wagemann R. Trebacz E. Boila G. Lockhart W. (1998). Methylmercury and Total Mercury in Tissues of Arctic marine Mammals. Sci. Total Environ. 218, 19–31. 10.1016/s0048-9697(98)00192-2
Wang R. Feng X.-B. Wang W.-X. (2013). In Vivo Mercury Methylation and Demethylation in Freshwater Tilapia Quantified by Mercury Stable Isotopes. Environ. Sci. Technol. 47, 7949–7957. 10.1021/es3043774
Wang W.-X. Tan Q.-G. (2019). Applications of Dynamic Models in Predicting the Bioaccumulation, Transport and Toxicity of Trace Metals in Aquatic Organisms. Environ. Pollut. 252, 1561–1573. 10.1016/j.envpol.2019.06.043
Wang X. Wang W.-X. (2017). Selenium Induces the Demethylation of Mercury in marine Fish. Environ. Pollut. 231, 1543–1551. 10.1016/j.envpol.2017.09.014
Wang X. Wu F. Wang W.-X. (2017). In Vivo Mercury Demethylation in a Marine Fish (Acanthopagrus Schlegeli). Environ. Sci. Technol. 51, 6441–6451. 10.1021/acs.est.7b00923
Wiederhold J. G. Cramer C. J. Daniel K. Infante I. Bourdon B. Kretzschmar R. (2010). Equilibrium Mercury Isotope Fractionation between Dissolved Hg(II) Species and Thiol-Bound Hg. Environ. Sci. Technol. 44, 4191–4197. 10.1021/es100205t
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.