Effects of Fengycins and Iturins on Fusarium oxysporum f. sp. physali and Root Colonization by Bacillus velezensis Bs006 Protect Golden Berry Against Vascular Wilt
Moreno-Velandia, Carlos Andres; Ongena, Marc; Cotes, Alba Marina
Ongena, Marc ; Université de Liège - ULiège > Département GxABT > Microbial, food and biobased technologies
Cotes, Alba Marina
Language :
English
Title :
Effects of Fengycins and Iturins on Fusarium oxysporum f. sp. physali and Root Colonization by Bacillus velezensis Bs006 Protect Golden Berry Against Vascular Wilt
Argüelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., and Fickers, P. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 8:63.
Bacon, C. W., Hinton, D. M., and Hinton, J. 2006. Growth-inhibiting effects of concentrations of fusaric acid on the growth of Bacillus mojavensis and other biocontrol Bacillus species. J. Appl. Microbiol. 100:185-194.
Bacon, C. W., Hinton, D. M., Porter, J. K., Glenn, A. E., and Kuldau, G. 2004. Fusaric acid, a Fusarium verticillioides metabolite, antagonistic to the endophytic biocontrol bacterium Bacillus mojavensis. Can. J. Bot. 82: 878-885.
Bais, H. P., Fall, R., and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134:307-319.
Baysal, Ö., Lai, D., Xu, H.-H., Siragusa, M., Caliskan, M., Carimi, F., Texeira da Silva, J. A., and Tör, M. 2013. A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species. PLoS One 8:e53182.
Bonmatin JM, Laprevote O, and Peypoux F 2003. Diversity among microbial cyclic lipopeptides: Iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb. Chem. High T. Scr. 6:541 556.
Bowers, J. H., and Parke, J. L. 1993. Epidemiology of Pythium damping-off and Aphanomyces root rot of peas after seed treatment with bacterial agents for biological control. Phytopathology 83:1466-1473.
Cao, Y., Pi, H., Chandrangsu, P., Li, Y., Wang, Y., Zhou, H., Xiong, H., Helmann, J. D., and Cai, Y. 2018. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 8:4360.
Carrillo, C., Teruel, J. A., Aranda, F. J., and Ortiz, A. 2003. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim. Biophys. Acta 1611:91-97.
Cawoy, H., Debois, D., Franzil, L., De Paw, E., Thonart, P., and Ongena, M. 2015. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb. Biotechnol. 8:281-295.
Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P., Dommes, J., and Ongena, M. 2014. Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol. Plant-Microbe Interact. 27:87-100.
Chen, M. C., Wang, J. P., Zhu, Y. J., Liu, B., Yang, W. J., and Ruan, C. Q. 2019. Antibacterial activity against Ralstonia solanacearum of the lipopeptides secreted from the Bacillus amyloliquefaciens strain FJAT-2349. J. Appl. Microbiol. 126:1519-1529.
Cherif, M., Sadfi, N., Benhamou, N., Boudabbous, A., Boubaker, A., Hajlaoui, M. R., and Tirilly, Y. 2002. Ultrastructure and cytochemistry of in vitro interactions of the antagonistic bacteria Bacillus cereus X16 and B. thuringiensis 55T with Fusarium roseum var. sambucinum. J. Plant Pathol. 84:83-93 http://www.jstor.org/stable/41998087.
Chitarra, G. S., Breeuwer, P., Nour, M. J. R., van Aelst, A. C., Rombouts, F. M., and Abee, T. 2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94:159-166.
Cho, S.-J., Lee, S. K., Cha, B. J., Kim, Y. H., and Shin, K.-S. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol. Lett. 223:47-51.
Debois, D., Jourdan, E., Smargiasso, N., Thonart, P., De Pauw, E., and Ongena, M. 2014. Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal. Chem. 86:4431-4438.
Di Pietro, A., Lorito, M., Hayes, C. K., Broadway, R. M., and Harman, G. E. 1993. Endochitinases from Gliocladium virens: Isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83:308-313.
Diaz, A., Smith, A., Mesa, P., Zapata, J., Caviedes, D., and Cotes, A. M. 2013. Control of Fusarium wilt in cape gooseberry by Trichoderma koningiopsis and PGPR. IOBC WPRS Bull. 86:89-94.
El-Bendary, M. A., Hamed, H. A., and Moharam, M. E. 2016. Potential of Bacillus isolates as bio-control agents against some fungal phytopathogens. Biocatal. Agric. Biotechnol. 5:173-178.
Fan, B., Blom, J., Klenk, H.-P., and Borriss, R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an "Operational Group B. amyloliquefaciens" within the B. subtilis species complex. Front. Microbiol. 8:22.
Fan, B., Chen, X. H., Budiharjo, A., Bleiss, W., Vater, J., and Borriss, R. 2011. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J. Biotechnol. 151:303-311.
Fira, D., Dimkic, I., Beric, T., Lozo, J., and Stankovic, S. 2018. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285:44-55.
Gamez, R., Rodriguez, F., Bernal, J. F., Agarwala, R., Landsman, D., and Mariño-Ramirez, L. 2015. Genome sequence of the banana plant growthpromoting rhizobacterium Bacillus amyloliquefaciens Bs006. Genome Announc. 3:e01391-15.
Gamez, R. M., Rodriguez, F., Medeiros, N., Ramirez, S., Vera, R., Landsman, D., and Mariño-Ramirez, L. 2019. Banana (Musa acuminata) transcriptome profiling in response to rhizobacteria: Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006. BMC Genomics 20:378.
Guleria, S., Walia, A., Chauhan, A., and Shirkot, C. K. 2016. Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum. Int. J. Food Microbiol. 232:134-143.
Han, Q., Wu, F., Wang, X., Qi, H., Shi, L., Ren, A., Liu, Q., Zhao, M., and Tang, C. 2015. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signaling pathways and mediate plant defense responses involved in pathogen-associated molecular pattern-triggered immunity. Environ. Microbiol. 17:1166-1188.
Hu, L. B., Shi, Z. Q., Zhang, T., and Yang, Z. M. 2007. Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol. Lett. 272:91-98.
Ines, M., and Dhouha, G. 2015. Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides 71:100-112.
Izquierdo-Garcia, L. F., Gonzalez-Almario, A., Cotes, A. M., and Moreno-Velandia, C. A. 2020. Trichoderma virens Gl006 and Bacillus velezensis Bs006: A compatible interaction controlling Fusarium wilt of cape gooseberry. Sci. Rep. 10:6857.
Jourdan, E., Henry, G., Duby, F., Dommes, J., Barthelemy, J. P., Thonart, P., and Ongena, M. 2009. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol. Plant-Microbe Interact. 22:456-468.
Khan, N., Maymon, M., and Hirsch, A. M. 2017. Combating Fusarium infection using Bacillus-based antimicrobials. Microorganisms 5:75.
Kumar, A., Saini, S., Wray, V., Nimtz, M., Prakash, A., and Johri, B. N. 2012. Characterization of an antifungal compound produced by Bacillus sp. strain A5F that inhibits Sclerotinia sclerotiorum. J. Basic Microbiol. 52:670-678.
Landy, M., Warren, G. H., Roseman, S. B., and Colio, L. G. 1948. Bacillomycin, an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc. Soc. Exp. Biol. Med. 67:539-541.
Leal, A. C. 2020. Colombia exporto US$74, 3 millones de frutas exoticas en 2019, 6% mas que el registro de 2018. https://www.agronegocios.co/agri cultura/colombia-exporto-us743-millones-de-frutas-exoticas-en-2019-6-masque-en-2018-2950228
Leclere, V., Bechet, M., Adam, A., Guez, J.-S., Wathelet, B., Ongena, M., Thonart, P., Gancel, F., Chollet-Imbert, M., and Jacques, P. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71: 4577-4584.
Li, L., Mo, M., Luo, H., and Zhang, K. 2007. Compounds inhibitory to nematophagous fungi produced by Bacillus sp. strain H6 isolated from fungistatic soil. Eur. J. Plant Pathol. 117:329-340.
Li, L., Qu, Q., Tian, B., and Zhang, K. Q. 2005. Induction of chlamydospores in Trichoderma harzianum and Gliocladium roseum by antifungal compounds produced by Bacillus subtilis C2. J. Phytopathol. 153:686-693.
Liberato, S., Sanchez-Betancourt, E., Argüelles, J., Gonzalez, C., Nuñez, V., and Barrero, L. 2014. Citogenetica de genotipos de uchuva, Physalis peruviana L. y Physalis floridana Rydb., con respuesta diferencial a Fusarium oxysporum. Corpoica 15:51-61.
Maget-Dana, R., and Peypoux, F. 1994. Iturins, a special class of poreforming lipopeptides: Biological and physicochemical properties. Toxicology 87:151-174.
Marzano, M., Gallo, A., and Altomare, C. 2013. Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. sp. lycopersici through UV-induced tolerance to fusaric acid. Biol. Control 67:397-408.
Moreno-Velandia, C. A., Izquierdo-Garcia, L. F., Ongena, M., Kloepper, J. W., and Cotes, A. M. 2019. Soil sterilization, pathogen and antagonist concentration affect biological control of Fusarium wilt of cape gooseberry by Bacillus velezensis Bs006. Plant Soil 435:39-55.
Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P., and Ongena, M. 2012. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol. Ecol. 79:176-191.
Ongena, M., Jacques, P., Toure, Y., Destain, J., Jabrane, A., and Thonart, P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol. 69:29-38.
Patel, H., Tscheka, C., Edwards, K., Karlson, G., and Heerklotz, H. 2011. All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. Biochim. Biophys. Acta 1808:2000-2008.
Pertot, I., Puopolo, G., Hosni, T., Pedrotti, L., Jourdan, E., and Ongena, M. 2013. Limited impact of abiotic stress on surfactin production in planta and on disease resistance induced by Bacillus amyloliquefaciens S499 in tomato and bean. FEMS Microbiol. Ecol. 86:505-519.
Rabbee, M. F., Ali, M. S., Choi, J., Hwang, B. S., Jeong, S. C., and Baek, K.-H. 2019. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules 24:1046.
Rocha, L. O., Tralamazza, S. M., Reis, G. M., Rabinovitch, L., Barbosa, C. B., and Corr^ea, B. 2014. Multi-method approach for characterizing the interaction between Fusarium verticillioides and Bacillus thuringiensis subsp. kurstaki [published correction appears in PLoS One 14:e0216693]. PLoS One 9:e92189.
Sa, R., An, X., Sui, J.-K., Wang, X.-H., Ji, C., Wang, C.-Q., Li, Q., Hu, Y.-R., and Liu, X. 2018. Purification and structural characterization of fengycin homologues produced by Bacillus subtilis from poplar wood bark. Australas. Plant Pathol. 47:259-268.
Simbaqueba, J., Catanzariti, A.-M., Gonzalez, C., and Jones, D. A. 2018. Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum. Mol. Plant Pathol. 19:2302-2318.
Singh, N., Pandey, P., Dubey, R. C., and Maheshwari, D. K. 2008. Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J Microb Biot 24:1669-1679.
Toloza-Moreno, D. L., Lizarazo-Forero, L. M., and Uribe-Velez, D. 2020. Antagonist capacity of bacteria isolated from cape gooseberry cultures (Physalis peruviana L.) for biological control of Fusarium oxysporum. Trop. Plant Pathol. 45:1-12.
Torres, M. J., Perez, C., Sabate, D. C., Petroselli, G., Erra-Balsells, R., and Audisio, M. C. 2017. Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens. Biol. Control 105:93-99.
Urrea, R., Cabezas, L., Sierra, R., Cardenas, M., Restrepo, S., and Jimenez, P. 2011. Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum. J. Appl. Microbiol. 111:707-716.
Vanittanakom, N., Loeffler, W., Koch, U., and Jung, G. 1986. Fengycin: A novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 39:888-901.
Yu, G. Y., Sinclair, J. B., Hartman, G. L., and Bertagnolli, B. L. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34:955-963.
Yuan, J., Raza, W., Huang, Q., and Shen, Q. 2012. The ultrasoundassisted extraction and identification of antifungal substances from B. amyloliquefaciens strain NJN-6 suppressing Fusarium oxysporum. J. Basic Microbiol. 52:721-730.
Zhang, B., Dong, C., Shang, Q., Han, Y., and Li, P. 2013. New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L. Biochim. Biophys. Acta 1828:2230-2237.
Zhao, P., Quang, C., Wang, Y., Wang, J., and Fan, S. 2014. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. J. Basic Microbiol. 54:448-456.