Schellenberger, R.; Universite de Reims Champagne-Ardenne, Unite de Recherche Resistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unite sous contrat 1488, Structure Federative de Recherche Condorcet, CNRS, Federation de Recherche 3417, Reims, 51687, France
Crouzet, J.; Universite de Reims Champagne-Ardenne, Unite de Recherche Resistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unite sous contrat 1488, Structure Federative de Recherche Condorcet, CNRS, Federation de Recherche 3417, Reims, 51687, France
Nickzad, A.; Centre Armand-Frappier Sante Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
Shu, L.-J.; Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
Kutschera, A.; Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
Gerster, T.; Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
Borie, N.; Universite de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moleculaire, Unite Mixte de Recherche 7312, Structure Federative de Recherche Condorcet, CNRS, Federation de Recherche 3417, Reims, 51687, France
Dawid, C.; Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
Cloutier, M.; Centre Armand-Frappier Sante Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
Villaume, S.; Universite de Reims Champagne-Ardenne, Unite de Recherche Resistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unite sous contrat 1488, Structure Federative de Recherche Condorcet, CNRS, Federation de Recherche 3417, Reims, 51687, France
Dhondt-Cordelier, S.; Universite de Reims Champagne-Ardenne, Unite de Recherche Resistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unite sous contrat 1488, Structure Federative de Recherche Condorcet, CNRS, Federation de Recherche 3417, Reims, 51687, France
Hubert, Jane
Cordelier, S.; Universite de Reims Champagne-Ardenne, Unite de Recherche Resistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unite sous contrat 1488, Structure Federative de Recherche Condorcet, CNRS, Federation de Recherche 3417, Reims, 51687, France
Mazeyrat-Gourbeyre, F.; Universite de Reims Champagne-Ardenne, Unite de Recherche Resistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unite sous contrat 1488, Structure Federative de Recherche Condorcet, CNRS, Federation de Recherche 3417, Reims, 51687, France
Schmid, C.; Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
Ongena, Marc ; Université de Liège - ULiège > Département GxABT > Microbial, food and biobased technologies
Renault, J.-H.; Universite de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moleculaire, Unite Mixte de Recherche 7312, Structure Federative de Recherche Condorcet, CNRS, Federation de Recherche 3417, Reims, 51687, France
Haudrechy, A.; Universite de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moleculaire, Unite Mixte de Recherche 7312, Structure Federative de Recherche Condorcet, CNRS, Federation de Recherche 3417, Reims, 51687, France
Hofmann, T.; Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
Baillieul, F.; Universite de Reims Champagne-Ardenne, Unite de Recherche Resistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unite sous contrat 1488, Structure Federative de Recherche Condorcet, CNRS, Federation de Recherche 3417, Reims, 51687, France
Clément, C.; Universite de Reims Champagne-Ardenne, Unite de Recherche Resistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unite sous contrat 1488, Structure Federative de Recherche Condorcet, CNRS, Federation de Recherche 3417, Reims, 51687, France
Zipfel, C.; The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, United Kingdom, Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, CH-8008, Switzerland
Gauthier, C.; Centre Armand-Frappier Sante Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
Déziel, E.; Centre Armand-Frappier Sante Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
Ranf, S.; Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
Dorey, S.; Universite de Reims Champagne-Ardenne, Unite de Recherche Resistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unite sous contrat 1488, Structure Federative de Recherche Condorcet, CNRS, Federation de Recherche 3417, Reims, 51687, France
Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate Arabidopsis innate immunity through two independent mechanisms
Publication date :
2021
Journal title :
Proceedings of the National Academy of Sciences of the United States of America
ISSN :
0027-8424
eISSN :
1091-6490
Publisher :
National Academy of Sciences
Volume :
118
Issue :
39
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
MESRI - Ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation NSERC - Natural Sciences and Engineering Research Council EC - European Commission DFG - Deutsche Forschungsgemeinschaft FRQNT - Fonds de Recherche du Québec - Nature et Technologies CNRS - Centre National de la Recherche Scientifique
D. E. Cook, C. H. Mesarich, B. P. Thomma, Understanding plant immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol. 53, 541-563 (2015).
K. Kanyuka, J. J. Rudd, Cell surface immune receptors: The guardians of the plant's extracellular spaces. Curr. Opin. Plant Biol. 50, 1-8 (2019).
T. Boller, G. Felix, A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379-406 (2009).
M. A. Newman, T. Sundelin, J. T. Nielsen, G. Erbs, MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 4, 139 (2013).
F. Boutrot, C. Zipfel, Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55, 257-286 (2017).
S. Ranf, Sensing of molecular patterns through cell surface immune receptors. Curr. Opin. Plant Biol. 38, 68-77 (2017).
D. Couto, C. Zipfel, Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16, 537-552 (2016).
J. Bigeard, J. Colcombet, H. Hirt, Signaling mechanisms in pattern-triggered immunity (PTI). Mol. Plant 8, 521-539 (2015).
A. Garcia-Brugger et al., Early signaling events induced by elicitors of plant defenses. Mol. Plant Microbe Interact. 19, 711-724 (2006).
S. Wu, L. Shan, P. He, Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Sci. 228, 118-126 (2014).
D. De Vleesschauwer, G. Gheysen, M. Höfte, Hormone defense networking in rice: Tales from a different world. Trends Plant Sci. 18, 555-565 (2013).
J. Glazebrook, Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205-227 (2005).
A. Robert-Seilaniantz, M. Grant, J. D. Jones, Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49, 317-343 (2011).
L. Trdá et al., Perception of pathogenic or beneficial bacteria and their evasion of host immunity: Pattern recognition receptors in the frontline. Front. Plant Sci. 6, 219 (2015).
A. M. Abdel-Mawgoud, F. Lépine, E. Déziel, Rhamnolipids: Diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 86, 1323-1336 (2010).
V. U. Irorere, L. Tripathi, R. Marchant, S. McClean, I. M. Banat, Microbial rhamnolipid production: A critical re-evaluation of published data and suggested future publication criteria. Appl. Microbiol. Biotechnol. 101, 3941-3951 (2017).
M. Perneel et al., Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ. Microbiol. 10, 778-788 (2008).
Ł. Chrzanowski, Ł. Ławniczak, K. Czaczyk, Why do microorganisms produce rhamnolipids? World J. Microbiol. Biotechnol. 28, 401-419 (2012).
A. Nickzad, E. Déziel, The involvement of rhamnolipids in microbial cell adhesion and biofilm development-An approach for control? Lett. Appl. Microbiol. 58, 447-453 (2014).
P. Vatsa, L. Sanchez, C. Clément, F. Baillieul, S. Dorey, Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int. J. Mol. Sci. 11, 5095-5108 (2010).
A. M. Abdel-Mawgoud, F. Lépine, E. Déziel, A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem. Biol. 21, 156-164 (2014).
A. Y. Burch et al., Pseudomonas syringae coordinates production of a motilityenabling surfactant with flagellar assembly. J. Bacteriol. 194, 1287-1298 (2012).
E. Déziel, F. Lépine, S. Milot, R. Villemur, rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology (Reading) 149, 2005-2013 (2003).
J. M. Plotnikova, L. G. Rahme, F. M. Ausubel, Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol. 124, 1766-1774 (2000).
J. Tremblay, A. P. Richardson, F. Lépine, E. Déziel, Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ. Microbiol. 9, 2622-2630 (2007).
U. Gerstel, M. Czapp, J. Bartels, J. M. Schröder, Rhamnolipid-induced shedding of flagellin from Pseudomonas aeruginosa provokes hBD-2 and IL-8 response in human keratinocytes. Cell. Microbiol. 11, 842-853 (2009).
R. A. Al-Tahhan, T. R. Sandrin, A. A. Bodour, R. M. Maier, Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: Effect on cell surface properties and interaction with hydrophobic substrates. Appl. Environ. Microbiol. 66, 3262-3268 (2000).
J. Andrä et al., Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: Immune cell stimulation and biophysical characterization. Biol. Chem. 387, 301-310 (2006).
J. Bauer, K. Brandenburg, U. Zähringer, J. Rademann, Chemical synthesis of a glycolipid library by a solid-phase strategy allows elucidation of the structural specificity of immunostimulation by rhamnolipids. Chemistry 12, 7116-7124 (2006).
J. Dössel, U. Meyer-Hoffert, J. M. Schröder, U. Gerstel, Pseudomonas aeruginosaderived rhamnolipids subvert the host innate immune response through manipulation of the human beta-defensin-2 expression. Cell. Microbiol. 14, 1364-1375 (2012).
M. Gonzalez-Juarrero et al., Polar lipids of Burkholderia pseudomallei induce different host immune responses. PLoS One 8, e80368 (2013).
L. Sanchez et al., Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol. 160, 1630-1641 (2012).
A. L. Varnier et al., Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ. 32, 178-193 (2009).
A. Kutschera et al., Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants. Science 364, 178-181 (2019).
J. Qi, J. Wang, Z. Gong, J. M. Zhou, Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol. 38, 92-100 (2017).
Y. Kadota, K. Shirasu, C. Zipfel, Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol. 56, 1472-1480 (2015).
M. A. Torres, J. L. Dangl, J. D. Jones, Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. U.S.A. 99, 517-522 (2002).
D. Chinchilla, Z. Bauer, M. Regenass, T. Boller, G. Felix, The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18, 465-476 (2006).
C. Zipfel et al., Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749-760 (2006).
M. Roux et al., The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23, 2440-2455 (2011).
L. Li et al., The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15, 329-338 (2014).
A. Miya et al., CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 104, 19613-19618 (2007).
W. Zhang et al., Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25, 4227-4241 (2013).
J. Choi et al., Identification of a plant receptor for extracellular ATP. Science 343, 290-294 (2014).
S. Ranf et al., A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat. Immunol. 16, 426-433 (2015).
W. P. Luzuriaga-Loaiza et al., Synthetic rhamnolipid bolaforms trigger an innate immune response in Arabidopsis thaliana. Sci. Rep. 8, 8534 (2018).
K. Shang-Guan et al., Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations. Plant Physiol. 176, 2543-2556 (2018).
X. F. Xin, S. Y. He, Pseudomonas syringae pv. tomato DC3000: A model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol. 51, 473-498 (2013).
S. G. Costa, E. Déziel, F. Lépine, Characterization of rhamnolipid production by Burkholderia glumae. Lett. Appl. Microbiol. 53, 620-627 (2011).
J. H. Ham, R. A. Melanson, M. C. Rush, Burkholderia glumae: Next major pathogen of rice? Mol. Plant Pathol. 12, 329-339 (2011).
A. B. Stephan, H. H. Kunz, E. Yang, J. I. Schroeder, Rapid hyperosmotic-induced Ca2+responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proc. Natl. Acad. Sci. U.S.A. 113, E5242-E5249 (2016).
T. Lenarčič et al., Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science 358, 1431-1434 (2017).
N. C. Caiazza, R. M. Shanks, G. A. O'Toole, Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J. Bacteriol. 187, 7351-7361 (2005).
A. Nickzad, F. Lépine, E. Déziel, Quorum sensing controls swarming motility of Burkholderia glumae through regulation of rhamnolipids. PLoS One 10, e0128509 (2015).
X. Yu et al., Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc. Natl. Acad. Sci. U.S.A. 110, E425-E434 (2013).
M. E. Davey, N. C. Caiazza, G. A. O'Toole, Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 185, 1027-1036 (2003).
H. Hirai et al., Glycosylation regulates specific induction of rice immune responses by Acidovorax avenae flagellin. J. Biol. Chem. 286, 25519-25530 (2011).
F. Taguchi et al., Glycosylation of flagellin from Pseudomonas syringae pv. tabaci 6605 contributes to evasion of host tobacco plant surveillance system. Physiol. Mol. Plant Pathol. 74, 11-17 (2009).
A. Hanuszkiewicz et al., Identification of the flagellin glycosylation system in Burkholderia cenocepacia and the contribution of glycosylated flagellin to evasion of human innate immune responses. J. Biol. Chem. 289, 19231-19244 (2014).
G. Henry, M. Deleu, E. Jourdan, P. Thonart, M. Ongena, The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immunerelated defence responses. Cell. Microbiol. 13, 1824-1837 (2011).
M. N. Nasir et al., Differential interaction of synthetic glycolipids with biomimetic plasma membrane lipids correlates with the plant biological response. Langmuir 33, 9979-9987 (2017).
M. Robineau et al., Synthetic mono-rhamnolipids display direct antifungal effects and trigger an innate immune response in tomato against Botrytis cinerea. Molecules 25, 3108 (2020).
H. Abbasi, K. A. Noghabi, A. Ortiz, Interaction of a bacterial monorhamnolipid secreted by Pseudomonas aeruginosa MA01 with phosphatidylcholine model membranes. Chem. Phys. Lipids 165, 745-752 (2012).
F. J. Aranda et al., Thermodynamics of the interaction of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa with phospholipid membranes. Langmuir 23, 2700-2705 (2007).
A. Ortiz, F. J. Aranda, J. A. Teruel, Interaction of dirhamnolipid biosurfactants with phospholipid membranes: A molecular level study. Adv. Exp. Med. Biol. 672, 42-53 (2010).
M. Sánchez, F. J. Aranda, J. A. Teruel, A. Ortiz, Interaction of a bacterial dirhamnolipid with phosphatidylcholine membranes: A biophysical study. Chem. Phys. Lipids 161, 51-55 (2009).
N. Monnier et al., Exploring the dual interaction of natural rhamnolipids with plant and fungal biomimetic plasma membranes through biophysical studies. Int. J. Mol. Sci. 20, 1009 (2019).
F. Lépine, E. Déziel, S. Milot, R. Villemur, Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy) alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. J. Mass Spectrom. 37, 41-46 (2002).
R. Kownatzki, B. Tümmler, G. Döring, Rhamnolipid of Pseudomonas aeruginosa in sputum of cystic fibrosis patients. Lancet 1, 1026-1027 (1987).
R. C. Read et al., Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating. J. Appl. Physiol. (1985) 72, 2271-2277 (1992).
M. Somerville et al., Release of mucus glycoconjugates by Pseudomonas aeruginosa rhamnolipid into feline trachea in vivo and human bronchus in vitro. Am. J. Respir. Cell Mol. Biol. 6, 116-122 (1992).
A. Germer et al., Exploiting the natural diversity of RhlA acyltransferases for the synthesis of the rhamnolipid precursor 3-(3-Hydroxyalkanoyloxy)alkanoic acid. Appl. Environ. Microbiol. 86, e02317-e02319 (2020).
S. Ranf, Immune sensing of lipopolysaccharide in plants and animals: Same but different. PLoS Pathog. 12, e1005596 (2016).
S. Compant, J. Nowak, T. Coenye, C. Clément, E. Ait Barka, Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Rev. 32, 607-626 (2008).
E. Kay, F. Bertolla, T. M. Vogel, P. Simonet, Opportunistic colonization of Ralstonia solanacearum-infected plants by Acinetobacter sp. and its natural competence development. Microb. Ecol. 43, 291-297 (2002).
M. W. Silby, C. Winstanley, S. A. Godfrey, S. B. Levy, R. W. Jackson, Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol. Rev. 35, 652-680 (2011).
I. K. Toth, L. Pritchard, P. R. J. Birch, Comparative genomics reveals what makes an enterobacterial plant pathogen. Annu. Rev. Phytopathol. 44, 305-336 (2006).
X. Yu et al., Transcriptional analysis of the global regulatory networks active in Pseudomonas syringae during leaf colonization. mBio 5, e01683-e14 (2014).
K. Zhu, C. O. Rock, RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J. Bacteriol. 190, 3147-3154 (2008).
P. Buscaill et al., Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides. Science 364, eaav0748 (2019).
F. Taguchi et al., Effects of glycosylation on swimming ability and flagellar polymorphic transformation in Pseudomonas syringae pv. tabaci 6605. J. Bacteriol. 190, 764-768 (2008).
J. M. Smith, A. Heese, Rapid bioassay to measure early reactive oxygen species production in Arabidopsis leave tissue in response to living Pseudomonas syringae. Plant Methods 10, 6 (2014).
M. Magnin-Robert et al., Modifications of sphingolipid content affect tolerance to hemibiotrophic and necrotrophic pathogens by modulating plant defense responses in Arabidopsis. Plant Physiol. 169, 2255-2274 (2015).
L.-J. Shu et al., Low cost, medium throughput depletion-binding assay for screening S-domain-receptor ligand interactions using in planta protein expression. bioRxiv [Preprint] (2021). https://doi.org/10.1101/2021.06.16.448648 (Accessed 18 June 2021).
S. König et al., Arabidopsis mutants of sphingolipid fatty acid α-hydroxylases accumulate ceramides and salicylates. New Phytol. 196, 1086-1097 (2012).