[en] Detection of antigenic biomarkers present in trace
amounts is of crucial importance for medical diagnosis. A parasitic
disease, human toxocariasis, lacks an adequate diagnostic method
despite its worldwide occurrence. The currently used serology tests
may stay positive even years after a possibly unnoticed infection,
whereas the direct detection of a re-infection or a still active infection
remains a diagnostic challenge due to the low concentration of
circulating parasitic antigens. We report a time-efficient sandwich
immunosensor using small recombinant single-domain antibodies
(nanobodies) derived from camelid heavy-chain antibodies specific
to Toxocara canis antigens. An enhanced sensitivity to pg/mL levels is achieved by using a redox cycle consisting of a photocatalytic oxidation and electrochemical reduction steps. The photocatalytic oxidation is achieved by a photosensitizer generating singlet oxygen (1O2) that, in turn, readily reacts with p-nitrophenol enzymatically produced under alkaline conditions. The photooxidation produces benzoquinone that is electrochemically reduced to hydroquinone, generating an amperometric response. The light-driven process could be easily separated from the background, thus making amperometric detection more reliable. The proposed method for detection of the toxocariasis antigen marker shows superior performances compared to other detection schemes with the same nanobodies and outperforms by at least two orders of magnitude the assays based on regular antibodies, thus suggesting new opportunities for electrochemical immunoassays of challenging low levels of antigens.
Disciplines :
Biotechnology
Author, co-author :
Trashin, Stanislav; Universiteit Antwerpen - UA > Department of Chemistry > A-Sense Lab
Morales Yánez, Francisco Javier ; Vrije Universiteit Brussel - VUB > Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Thiruvottriyur Shanmugam,, Saranya; Vrije Universiteit Brussel - VUB > Department of Chemistry > A-Sense Lab
Paredis, Linda; Institute of Tropical Medicine Antwerp > Department of Biomedical Sciences > Unit of Medical Helminthology
Carrion, Erik N; Seton Hall University > Department of Chemistry and Biochemistry and the Center for Functional Materials
Sariego, Idalia; Institute of Tropical Medicine Pedro Kouri > Department of Parasitology
Tighe, P. J. ; Ryder, R. R. ; Todd, I. ; Fairclough, L. C. ELISA in the multiplex era: potentials and pitfalls. Proteomics: Clin. Appl. 2015, 9, 406 - 422, 10.1002/prca.201400130
Cohen, L. ; Walt, D. R. Highly sensitive and multiplexed protein measurements. Chem. Rev. 2019, 119, 293 - 321, 10.1021/acs.chemrev.8b00257
Vanli, G. ; Cuesta-Marban, A. ; Widmann, C. Evaluation and validation of commercial antibodies for the detection of Shb. PLoS One 2017, 12, 10.1371/journal.pone.0188311
Weller, M. G. Quality issues of research antibodies. Anal. Chem. Insights 2016, 11, 21 - 27, 10.4137/ACI.S31614
Leow, C. H. ; Fischer, K. ; Leow, C. Y. ; Cheng, Q. ; Chuah, C. ; McCarthy, J. Single domain antibodies as new biomarker detectors. Diagnostics 2017, 7, 52, 10.3390/diagnostics7040052
Li, H. ; Sun, Y. ; Elseviers, J. ; Muyldermans, S. ; Liu, S. ; Wan, Y. A nanobody-based electrochemiluminescent immunosensor for sensitive detection of human procalcitonin. Analyst 2014, 139, 3718 - 3721, 10.1039/c4an00626g
Wang, H. ; Li, G. ; Zhang, Y. ; Zhu, M. ; Ma, H. ; Du, B. ; Wei, Q. ; Wan, Y. Nanobody-based electrochemical immunoassay for ultrasensitive determination of apolipoprotein-a1 using silver nanoparticles loaded nanohydroxyapatite as label. Anal. Chem. 2015, 87, 11209 - 11214, 10.1021/acs.analchem.5b04063
Mi, L. ; Wang, P. ; Yan, J. ; Qian, J. ; Lu, J. ; Yu, J. ; Wang, Y. ; Liu, H. ; Zhu, M. ; Wan, Y. ; Liu, S. A novel photoelectrochemical immunosensor by integration of nanobody and TiO2 nanotubes for sensitive detection of serum cystatin C. Anal. Chim. Acta 2016, 902, 107 - 114, 10.1016/j.aca.2015.11.007
Pan, D. ; Li, G. ; Hu, H. ; Xue, H. ; Zhang, M. ; Zhu, M. ; Gong, X. ; Zhang, Y. ; Wan, Y. ; Shen, Y. Direct immunoassay for facile and sensitive detection of small molecule aflatoxin B1 based on nanobody. Chem. - Eur. J. 2018, 24, 9869 - 9876, 10.1002/chem.201801202
El-Moghazy, A. Y. ; Huo, J. ; Amaly, N. ; Vasylieva, N. ; Hammock, B. D. ; Sun, G. An innovative nanobody-based electrochemical immunosensor using decorated nylon nanofibers for point-of-care monitoring of human exposure to pyrethroid insecticides. ACS Appl. Mater. Interfaces 2020, 12, 6159 - 6168, 10.1021/acsami.9b16193
Oloketuyi, S. ; Mazzega, E. ; Zavašnik, J. ; Pungjunun, K. ; Kalcher, K. ; de Marco, A. ; Mehmeti, E. Electrochemical immunosensor functionalized with nanobodies for the detection of the toxic microalgae Alexandrium minutum using glassy carbon electrode modified with gold nanoparticles. Biosens. Bioelectron. 2020, 154, 112052, 10.1016/j.bios.2020.112052
Morales-Yanez, F. J. ; Sariego, I. ; Vincke, C. ; Hassanzadeh-Ghassabeh, G. ; Polman, K. ; Muyldermans, S. An innovative approach in the detection of Toxocara canis excretory/secretory antigens using specific nanobodies. Int. J. Parasitol. 2019, 49, 635 - 645, 10.1016/j.ijpara.2019.03.004
Morales-Yánez, F. ; Trashin, S. ; Hermy, M. ; Sariego, I. ; Polman, K. ; Muyldermans, S. ; De Wael, K. Fast one-step ultrasensitive detection of toxocara canis antigens by a nanobody-based electrochemical magnetosensor. Anal. Chem. 2019, 91, 11582 - 11588, 10.1021/acs.analchem.9b01687
Morales-Yánez, F. ; Trashin, S. ; Sariego, I. ; Roucher, C. ; Paredis, L. ; Chico, M. ; De Wael, K. ; Muyldermans, S. ; Cooper, P. ; Polman, K. Electrochemical detection of Toxocara canis excretory-secretory antigens in children from rural communities in Esmeraldas Province, Ecuador: association between active infection and high eosinophilia. Parasites Vectors 2020, 13, 245, 10.1186/s13071-020-04113-2
Magnaval, J.-F. ; Fabre, R. ; Maurières, P. ; Charlet, J.-P. ; de Larrard, B. Application of the western blotting procedure for the immunodiagnosis of human toxocariasis. Parasitol. Res. 1991, 77, 697 - 702, 10.1007/BF00928685
Magnaval, J. F. ; Glickman, L. T. ; Dorchies, P. ; Morassin, B. Highlights of human toxocariasis. J. Virol. Methods 2001, 39, 1 - 11, 10.3347/kjp.2001.39.1.1
Goggins, S. ; Naz, C. ; Marsh, B. J. ; Frost, C. G. Ratiometric electrochemical detection of alkaline phosphatase. Chem. Commun. 2015, 51, 561 - 564, 10.1039/C4CC07693A
Preechaworapun, A. ; Dai, Z. ; Xiang, Y. ; Chailapakul, O. ; Wang, J. Investigation of the enzyme hydrolysis products of the substrates of alkaline phosphatase in electrochemical immunosensing. Talanta 2008, 76, 424 - 431, 10.1016/j.talanta.2008.03.025
Kreuzer, M. P. ; O’Sullivan, C. K. ; Guilbault, G. G. Alkaline phosphatase as a label for immunoassay using amperometric detection with a variety of substrates and an optimal buffer system. Anal. Chim. Acta 1999, 393, 95 - 102, 10.1016/S0003-2670(98)00856-3
Scheller, F. W. ; Bauer, C. G. ; Makower, A. ; Wollenberger, U. ; Warsinke, A. ; Bier, F. F. Coupling of immunoassays with enzymatic recycling electrodes. Anal. Lett. 2001, 34, 1233 - 1245, 10.1081/AL-100104149
Lisdat, F. ; Ho, W. O. ; Wollenberger, U. ; Scheller, F. W. ; Richter, T. ; Bilitewski, U. Recycling systems based on screen-printed electrodes. Electroanalysis 1998, 10, 803 - 807, 10.1002/(SICI)1521-4109(199809)10:12<803::AID-ELAN803>3.0.CO;2-3
Cosnier, S. ; Gondran, C. ; Watelet, J.-C. ; De Giovani, W. ; Furriel, R. P. M. ; Leone, F. A. A bienzyme electrode (alkaline phosphatase - polyphenol oxidase) for the amperometric determination of phosphate. Anal. Chem. 1998, 70, 3952 - 3956, 10.1021/ac980125a
Ciana, L. D. ; Bernacca, G. ; Bordin, F. ; Fenu, S. ; Garetto, F. Highly sensitive amperometric measurement of alkaline phosphatase activity with glucose oxidase amplification. J. Electroanal. Chem. 1995, 382, 129 - 135, 10.1016/0022-0728(94)03694-X
Ho, W. O. ; Athey, D. ; McNeil, C. J. Amperometric detection of alkaline phosphatase activity at a horseradish peroxidase enzyme electrode based on activated carbon: potential application to electrochemical immunoassay. Biosens. Bioelectron. 1995, 10, 683 - 691, 10.1016/0956-5663(95)96959-3
Thompson, R. Q. ; Porter, M. ; Stuver, C. ; Halsall, H. B. ; Heineman, W. R. ; Buckley, E. ; Smyth, M. R. Zeptomole detection limit for alkaline phosphatase using 4-aminophenylphosphate, amperometric detection, and an optimal buffer system. Anal. Chim. Acta 1993, 271, 223 - 229, 10.1016/0003-2670(93)80049-Q
Ito, S. ; Yamazaki, S.-i. ; Kano, K. ; Ikeda, T. Highly sensitive electrochemical detection of alkaline phosphatase. Anal. Chim. Acta 2000, 424, 57 - 63, 10.1016/S0003-2670(00)01149-1
Trashin, S. ; Rahemi, V. ; Ramji, K. ; Neven, L. ; Gorun, S. M. ; De Wael, K. Singlet oxygen-based electrosensing by molecular photosensitizers. Nat. Commun. 2017, 8, 16108, 10.1038/ncomms16108
De Savigny, D. H. In vitro maintenance of Toxocara canis larvae and a simple method for the production of Toxocara ES antigen for use in serodiagnostic tests for visceral larva migrans. J. Parasitol. 1975, 61, 781 - 782, 10.2307/3279492
Conrath, K. E. ; Lauwereys, M. ; Wyns, L. ; Muyldermans, S. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J. Biol. Chem. 2001, 276, 7346 - 7350, 10.1074/jbc.M007734200
Sariego, I. ; Kanobana, K. ; Junco, R. ; Vereecken, K. ; Nuñez, F. A. ; Polman, K. ; Bonet, M. ; Rojas, L. Frequency of antibodies to Toxocara in Cuban schoolchildren. Trop. Med. Int. Health 2012, 17, 711 - 714, 10.1111/j.1365-3156.2012.02996.x
Rodríguez-Caballero, A. ; Martínez-Gordillo, M. N. ; Medina-Flores, Y. ; Medina-Escutia, M. E. ; Meza-Lucas, A. ; Correa, D. ; Caballero-Salazar, S. ; Ponce-Macotela, M. Successful capture of Toxocara canis larva antigens from human serum samples. Parasites Vectors 2015, 8, 264, 10.1186/s13071-015-0875-5
Gerdes, R. ; Lapok, L. ; Tsaryova, O. ; Wöhrle, D. ; Gorun, S. M. Rational design of a reactive yet stable organic-based photocatalyst. Dalton Trans. 2009, 1098 - 1100, 10.1039/b822111c
Arvinte, A. ; Mahosenaho, M. ; Pinteala, M. ; Sesay, A.-M. ; Virtanen, V. Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes. Microchim. Acta 2011, 174, 337 - 343, 10.1007/s00604-011-0628-x
Neven, L. ; Shanmugam, S. T. ; Rahemi, V. ; Trashin, S. ; Sleegers, N. ; Carrión, E. N. ; Gorun, S. M. ; De Wael, K. Optimized photoelectrochemical detection of essential drugs bearing phenolic groups. Anal. Chem. 2019, 91, 9962 - 9969, 10.1021/acs.analchem.9b01706
Wei, Y. ; Wu, K. ; Wu, Y. ; Hu, S. Electrochemical characterization of a new system for detection of superoxide ion in alkaline solution. Electrochem. Commun. 2003, 5, 819 - 824, 10.1016/j.elecom.2003.08.001
Wilkinson, F. ; Helman, W. P. ; Ross, A. B. Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J. Phys. Chem. Ref. Data 1995, 24, 663 - 677, 10.1063/1.555965
Latch, D. E. ; McNeill, K. Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions. Science 2006, 311, 1743 - 1747, 10.1126/science.1121636
Ishiyamna, S. ; Ono, K. ; Rai, S. K. ; Uga, S. Method for detecting circulating Toxocara canis antigen and its application in human serum samples. Nepal Med. Coll. J. 2009, 11, 9 - 13
Bautista-García, S. G. ; Martínez-Gordillo, M. N. ; Peralta-Abarca, G. E. ; González-Bobadilla, N. Y. ; Clavijo-Sánchez, K. ; Chávez-Zea, A. L. ; Hernández-Saavedra, A. E. ; Huerta-López, J. G. ; Pedroza-Meléndez, Á. ; González-Garay, A. G. ; Ponce-Macotela, M. Detection of antigens and anti-Toxocara canis antibodies in children with different asthma severities. Immun. Inflamm. Dis. 2021, 9, 435 - 442, 10.1002/iid3.403
Yokoi, K. ; Kobayashi, F. ; Sakai, J. ; Usui, M. ; Tsuji, M. Sandwich ELISA detection of excretory-secretory antigens of Toxocara canis larvae using a specific monoclonal antibody. Southeast Asian J. Trop. Med. Public Health 2002, 33, 33 - 37
Luo, Z.-j. ; Wang, G.-x. ; Yang, C.-l. ; Luo, C.-h. ; Cheng, S.-w. ; Liao, L. Detection of circulating antigens and antibodies in Toxocara canis infection among children in Chengdu, China. J. Parasitol. 1999, 85, 252 - 256, 10.2307/3285628
Robertson, B. D. ; Burkot, T. R. ; Gillespie, S. H. ; Kennedy, M. W. ; Wambai, Z. ; Maizels, R. M. Detection of circulating parasite antigen and specific antibody in Toxocara canis infections. Clin. Exp. Immunol. 1988, 74, 236 - 241
Gillespie, S. H. ; Bidwell, D. ; Voller, A. ; Robertson, B. D. ; Maizels, R. M. Diagnosis of human toxocariasis by antigen capture enzyme linked immunosorbent assay. J. Clin. Pathol. 1993, 46, 551 - 554, 10.1136/jcp.46.6.551
De Genst, E. ; Silence, K. ; Decanniere, K. ; Conrath, K. ; Loris, R. ; Kinne, J. ; Muyldermans, S. ; Wyns, L. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 4586 - 4591, 10.1073/pnas.0505379103
Berger, A. ; Nsoga, M. T. N. ; Perez-Rodriguez, F. J. ; Aad, Y. A. ; Sattonnet-Roche, P. ; Gayet-Ageron, A. ; Jaksic, C. ; Torriani, G. ; Boehm, E. ; Kronig, I. ; Sacks, J. A. ; de Vos, M. ; Bausch, F. J. ; Chappuis, F. ; Renzoni, A. ; Kaiser, L. ; Schibler, M. ; Eckerle, I. Diagnostic accuracy of two commercial SARS-CoV-2 antigen-detecting rapid tests at the point of care in community-based testing centers. PLoS One 2021, 16, 10.1371/journal.pone.0248921