Astrophysics - High Energy Astrophysical Phenomena
Résumé :
[en] We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from $-10^{-8}$ to $10^{-9}$ Hz/s. No statistically-significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude $h_0$ are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ${\sim}1.1\times10^{-25}$ at 95\% confidence-level. The minimum upper limit of $1.10\times10^{-25}$ is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals.
Disciplines :
Physique
Auteur, co-auteur :
Abbott, R.
the Virgo Collaboration
the KAGRA Collaboration
Baltus, Grégory ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Boudart, Vincent ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Collette, Christophe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Active aerospace struct. and adv. mecha. systems
Cudell, Jean-René ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Fays, Maxime ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
The LIGO Scientific Collaboration
Langue du document :
Anglais
Titre :
All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data
F. Acernese, Advanced Virgo: A second-generation interferometric gravitational wave detector, Classical Quantum Gravity 32, 024001 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/2/024001
B. P. Abbott, GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019). PRXHAE 2160-3308 10.1103/PhysRevX.9.031040
R. Abbott, GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run, Phys. Rev. X 11, 021053 (2021). PRXHAE 2160-3308 10.1103/PhysRevX.11.021053
R. Abbott, Observation of gravitational waves from two neutron star-black hole coalescences, Astrophys. J. Lett. 915, L5 (2021). AJLEEY 2041-8213 10.3847/2041-8213/ac082e
Paul D. Lasky, Gravitational waves from neutron stars: A review, Pub. Astron. Soc. Aust. 32, e034 (2015). PASAFO 1323-3580 10.1017/pasa.2015.35
Kostas Glampedakis and Leonardo Gualtieri, Gravitational waves from single neutron stars: An advanced detector era survey, Astrophysics and Space Science Library 457, 673 (2018). ASSLAD 0067-0057 10.1007/978-3-319-97616-7
Magdalena Sieniawska and Michał Bejger, Continuous gravitational waves from neutron stars: Current status and prospects, Universe 5, 217 (2019). 2218-1997 10.3390/universe5110217
Maximiliano Isi, Matthew Pitkin, and Alan J. Weinstein, Probing dynamical gravity with the polarization of continuous gravitational waves, Phys. Rev. D 96, 042001 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.042001
Anne M. Green and Bradley J. Kavanagh, Primordial black holes as a dark matter candidate, J. Phys. G 48, 043001 (2021). JPGPED 0954-3899 10.1088/1361-6471/abc534
Sebastien Clesse and Juan Garcia-Bellido, GW190425, GW190521 and GW190814: Three candidate mergers of primordial black holes from the QCD epoch, Phys. Dark Universe 38, 101111 (2022). PDUHA3 2212-6864 10.1016/j.dark.2022.101111
Hiroko Niikura, Masahiro Takada, Shuichiro Yokoyama, Takahiro Sumi, and Shogo Masaki, Constraints on Earth-mass primordial black holes from OGLE 5-year microlensing events, Phys. Rev. D 99, 083503 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.083503
M. R. S. Hawkins, The signature of primordial black holes in the dark matter halos of galaxies, Astron. Astrophys. 633, A107 (2020). AAEJAF 0004-6361 10.1051/0004-6361/201936462
Saloni Bhatiani, Xinyu Dai, and Eduardo Guerras, Confirmation of planet-mass objects in extragalactic systems, Astrophys. J. 885, 77 (2019). ASJOAB 0004-637X 10.3847/1538-4357/ab46ac
Sebastien Clesse and Juan García-Bellido, Seven hints for primordial black hole dark matter, Phys. Dark Universe 22, 137 (2018). PDUHA3 2212-6864 10.1016/j.dark.2018.08.004
C. Sivaram, Kenath Arun, and O. V. Kiren, Primordial planets predominantly of dark matter, Earth Moon Planets 122, 115 (2019). EMPLD3 0167-9295 10.1007/s11038-019-09525-4
Jakub Scholtz and James Unwin, What If Planet 9 Is a Primordial Black Hole?, Phys. Rev. Lett. 125, 051103 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.125.051103
Marek A. Abramowicz, Michał Bejger, and Maciek Wielgus, Collisions of neutron stars with primordial black holes as fast radio bursts engines, Astrophys. J. 868, 17 (2018). ASJOAB 0004-637X 10.3847/1538-4357/aae64a
B. P. Abbott, Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run, Phys. Rev. Lett. 123, 161102 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.123.161102
Khun Sang Phukon, Gregory Baltus, Sarah Caudill, Sebastien Clesse, Antoine Depasse, Maxime Fays, Heather Fong, Shasvath J. Kapadia, Ryan Magee, and Andres Jorge Tanasijczuk, The hunt for sub-solar primordial black holes in low mass ratio binaries is open, arXiv:2105.11449.
Martti Raidal, Ville Vaskonen, and Hardi Veermäe, Gravitational waves from primordial black hole mergers, J. Cosmol. Astropart. Phys. 09 (2017) 037. JCAPBP 1475-7516 10.1088/1475-7516/2017/09/037
Sai Wang, Yi-Fan Wang, Qing-Guo Huang, and Tjonnie G. F. Li, Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background, Phys. Rev. Lett. 120, 191102 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.120.191102
Juan García-Bellido and Sebastien Clesse, Constraints from microlensing experiments on clustered primordial black holes, Phys. Dark Universe 19, 144 (2018). PDUHA3 2212-6864 10.1016/j.dark.2018.01.001
Josh Calcino, Juan Garcia-Bellido, and Tamara M. Davis, Updating the MACHO fraction of the Milky Way dark halowith improved mass models, Mon. Not. R. Astron. Soc. 479, 2889 (2018). MNRAA4 0035-8711 10.1093/mnras/sty1368
Konstantin M. Belotsky, Vyacheslav I. Dokuchaev, Yury N. Eroshenko, Ekaterina A. Esipova, Maxim Yu. Khlopov, Leonid A. Khromykh, Alexander A. Kirillov, Valeriy V. Nikulin, Sergey G. Rubin, and Igor V. Svadkovsky, Clusters of primordial black holes, Eur. Phys. J. C 79, 246 (2019). EPCFFB 1434-6044 10.1140/epjc/s10052-019-6741-4
Bernard Carr, Sebastien Clesse, Juan García-Bellido, and Florian Kühnel, Cosmic conundra explained by thermal history and primordial black holes, Phys. Dark Universe 31, 100755 (2021). PDUHA3 2212-6864 10.1016/j.dark.2020.100755
Manuel Trashorras, Juan García-Bellido, and Savvas Nesseris, The clustering dynamics of primordial black boles in (Equation presented)-body simulations, Universe 7, 18 (2021). 2218-1997 10.3390/universe7010018
V. De Luca, V. Desjacques, G. Franciolini, and A. Riotto, The clustering evolution of primordial black holes, J. Cosmol. Astropart. Phys. 11 (2020) 028. JCAPBP 1475-7516 10.1088/1475-7516/2020/11/028
Andrew L. Miller, Sébastien Clesse, Federico De Lillo, Giacomo Bruno, Antoine Depasse, and Andres Tanasijczuk, Probing planetary-mass primordial black holes with continuous gravitational waves, Phys. Dark Universe 32, 100836 (2021). PDUHA3 2212-6864 10.1016/j.dark.2021.100836
Andrew L. Miller, Nancy Aggarwal, Sébastien Clesse, and Federico De Lillo, Constraints on planetary and asteroid-mass primordial black holes from continuous gravitational-wave searches, Phys. Rev. D 105, 062008 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.105.062008
B. P. Abbott, All-sky search for periodic gravitational waves in the O1 LIGO data, Phys. Rev. D 96, 062002 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.062002
B. P. Abbott, Full band all-sky search for periodic gravitational waves in the O1 LIGO data, Phys. Rev. D 97, 102003 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.102003
B. P. Abbott, First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data, Phys. Rev. D 96, 122004 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.122004
B. P. Abbott, All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data, Phys. Rev. D 100, 024004 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.100.024004
C. Palomba, S. D'Antonio, P. Astone, S. Frasca, G. Intini, I. La Rosa, P. Leaci, S. Mastrogiovanni, A. L. Miller, F. Muciaccia, O. J. Piccinni, L. Rei, and F. Simula, Direct Constraints on the Ultralight Boson Mass from Searches of Continuous Gravitational Waves, Phys. Rev. Lett. 123, 171101 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.123.171101
B. Steltner, M. A. Papa, H. B. Eggenstein, B. Allen, V. Dergachev, R. Prix, B. Machenschalk, S. Walsh, S. J. Zhu, O. Behnke, and S. Kwang, Einstein@Home all-sky search for continuous gravitational waves in LIGO O2 public data, Astrophys. J. 909, 79 (2021). ASJOAB 0004-637X 10.3847/1538-4357/abc7c9
Vladimir Dergachev and Maria Alessandra Papa, Results from the First All-Sky Search for Continuous Gravitational Waves from Small-Ellipticity Sources, Phys. Rev. Lett. 125, 171101 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.125.171101
Vladimir Dergachev and Maria Alessandra Papa, Results from high-frequency all-sky search for continuous gravitational waves from small-ellipticity sources, Phys. Rev. D 103, 063019 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.063019
R. Abbott, All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data, Phys. Rev. D 104, 082004 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.082004
P. B. Covas and Alicia M. Sintes, First All-Sky Search for Continuous Gravitational-Wave Signals from Unknown Neutron Stars in Binary Systems Using Advanced LIGO Data, Phys. Rev. Lett. 124, 191102 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.124.191102
R. Abbott, All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems, Phys. Rev. D 103, 064017 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.064017
Karl Wette, Liam Dunn, Patrick Clearwater, and Andrew Melatos, Deep exploration for continuous gravitational waves at 171-172 Hz in LIGO second observing run data, Phys. Rev. D 103, 083020 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.083020
R. Abbott, All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data, Phys. Rev. D 105, 102001 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.105.102001
Rodrigo Tenorio, David Keitel, and Alicia M. Sintes, Search methods for continuous gravitational-wave signals from unknown sources in the advanced-detector era, Universe 7, 474 (2021). 2218-1997 10.3390/universe7120474
Pia Astone, Alberto Colla, Sabrina D'Antonio, Sergio Frasca, and Cristiano Palomba, Method for all-sky searches of continuous gravitational wave signals using the frequency-Hough transform, Phys. Rev. D 90, 042002 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.90.042002
Badri Krishnan, Alicia M. Sintes, Maria Alessandra Papa, Bernard F. Schutz, Sergio Frasca, and Cristiano Palomba, Hough transform search for continuous gravitational waves, Phys. Rev. D 70, 082001 (2004). PRVDAQ 1550-7998 10.1103/PhysRevD.70.082001
Piotr Jaranowski, Andrzej Królak, and Bernard F. Schutz, Data analysis of gravitational-wave signals from spinning neutron stars: The signal and its detection, Phys. Rev. D 58, 063001 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.58.063001
J. Aasi, Implementation of an F-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data, Classical Quantum Gravity 31, 165014 (2014). CQGRDG 0264-9381 10.1088/0264-9381/31/16/165014
Joe Bayley, Chris Messenger, and Graham Woan, Generalized application of the Viterbi algorithm to searches for continuous gravitational-wave signals, Phys. Rev. D 100, 023006 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.100.023006
Ling Sun, Characterization of systematic error in Advanced LIGO calibration, Classical Quantum Gravity 37, 225008 (2020). CQGRDG 0264-9381 10.1088/1361-6382/abb14e
Ling Sun, Characterization of systematic error in Advanced LIGO calibration in the second half of O3, arXiv:2107.00129.
F. Acernese, Calibration of Advanced Virgo and reconstruction of detector strain h(t) during the observing run O3, Classical Quantum Gravity 39, 045006 (2022). CQGRDG 0264-9381 10.1088/1361-6382/ac3c8e
R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, The Australia Telescope National Facility Pulsar Catalogue, Astron. J. 129, 1993 (2005). ANJOAA 0004-6256 10.1086/428488
E. Goetz, O3 lines and combs in found in self-gated c01 data, Technical Report No. T2100200-v2, LIGO, 2021, https://dcc.ligo.org/LIGO-T2100200/public.
J. Aasi (LIGO Scientific and Virgo Collaborations), First low-frequency all-sky search for continuous gravitational wave signals, Phys. Rev. D 93, 042007 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.042007
P. Astone, S. Frasca, and C. Palomba, The short FFT database and the peak map for the hierarchical search of periodic sources, Classical Quantum Gravity 22, S1197 (2005). CQGRDG 0264-9381 10.1088/0264-9381/22/18/S34
C. Palomba, P. Astone, and S. Frasca, Adaptive Hough transform for the search of periodic sources, Classical Quantum Gravity 22, S1255 (2005). CQGRDG 0264-9381 10.1088/0264-9381/22/18/S39
I. La Rosa, P. Astone, S. D'Antonio, S. Frasca, P. Leaci, A. L. Miller, C. Palomba, O. J. Piccinni, L. Pierini, and T. Regimbau, Continuous gravitational-wave data analysis with general purpose computing on graphic processing units, Universe 7, 218 (2021). 2218-1997 10.3390/universe7070218
M. Di Cesare, All-sky gravitational wave searches for isolated neutron stars: Methods and applications to LIGO-Virgo data, Master's thesis, University of Rome Sapienza, 2021, https://web.infn.it/VirgoRoma/images/MartinaDiCesare_MDC_master_thesis.pdf.
Alicia M. Sintes and Badri Krishnan, Improved hough search for gravitational wave pulsars, J. Phys. Conf. Ser. 32, 206 (2006). JPCSDZ 1742-6588 10.1088/1742-6596/32/1/031
B. Abbott, All-sky search for periodic gravitational waves in LIGO S4 data, Phys. Rev. D 77, 022001 (2008). PRVDAQ 1550-7998 10.1103/PhysRevD.77.022001
B. P. Abbott, Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data, Phys. Rev. D 94, 042002 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.042002
P. B. Covas and Alicia M. Sintes, New method to search for continuous gravitational waves from unknown neutron stars in binary systems, Phys. Rev. D 99, 124019 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.124019
Miquel Oliver, David Keitel, and Alicia M. Sintes, Adaptive transient Hough method for long-duration gravitational wave transients, Phys. Rev. D 99, 104067 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.104067
Rodrigo Tenorio, David Keitel, and Alicia M. Sintes, Time-frequency track distance for comparing continuous gravitational wave signals, Phys. Rev. D 103, 064053 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.064053
David Keitel, Rodrigo Tenorio, Gregory Ashton, and Reinhard Prix, PyFstat: A Python package for continuous gravitational-wave data analysis, J. Open Source Software 6, 3000 (2021). 2475-9066 10.21105/joss.03000
Rodrigo Tenorio, David Keitel, and Alicia M. Sintes, Application of a hierarchical MCMC follow-up to Advanced LIGO continuous gravitational-wave candidates, Phys. Rev. D 104, 084012 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.084012
Sylvia J. Zhu, Masha Baryakhtar, Maria Alessandra Papa, Daichi Tsuna, Norita Kawanaka, and Heinz-Bernd Eggenstein, Characterizing the continuous gravitational-wave signal from boson clouds around Galactic isolated black holes, Phys. Rev. D 102, 063020 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.063020
G. Ashton and R. Prix, Hierarchical multistage MCMC follow-up of continuous gravitational wave candidates, Phys. Rev. D 97, 103020 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.103020
R. Abbott, Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data, Phys. Rev. D 105, 022002 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.105.022002
Prix, Reinhard, Coherent (Equation presented)-statistic on semi-coherent candidate, https://dcc.ligo.org/LIGO-T1700236/public (2019).
Andrzej Pisarski and Piotr Jaranowski, Banks of templates for all-sky narrow-band searches of gravitational waves from spinning neutron stars, Classical Quantum Gravity 32, 145014 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/14/145014
Benjamin J. Owen, Lee Lindblom, Curt Cutler, Bernard F. Schutz, Alberto Vecchio, and Nils Andersson, Gravitational waves from hot young rapidly rotating neutron stars, Phys. Rev. D 58, 084020 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.58.084020
Mark G. Alford and Kai Schwenzer, Gravitational wave emission and spin-down of young pulsars, Astrophys. J. 781, 26 (2014). ASJOAB 0004-637X 10.1088/0004-637X/781/1/26
A. Patruno, B. Haskell, and N. Andersson, The spin distribution of fast-spinning neutron stars in low-mass x-ray binaries: Evidence for two subpopulations, Astrophys. J. 850, 106 (2017). ASJOAB 0004-637X 10.3847/1538-4357/aa927a
P. C. C. Freire, A. Ridolfi, M. Kramer, C. Jordan, R. N. Manchester, P. Torne, J. Sarkissian, C. O. Heinke, N. D'Amico, F. Camilo, D. R. Lorimer, and A. G. Lyne, Long-term observations of the pulsars in 47 Tucanae-II. Proper motions, accelerations and jerks, Mon. Not. R. Astron. Soc. 471, 857 (2017). MNRAA4 0035-8711 10.1093/mnras/stx1533
Guido Van Rossum and Fred L. Drake, Python 3 Reference Manual (CreateSpace, Scotts Valley, CA, 2009).
Pauli Virtanen, SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nat. Methods 17, 261 (2020). NMAEA3 1548-7091 10.1038/s41592-019-0686-2
Eric O. Lebigot, Uncertainties: A python package for calculations with uncertainties (v3.1.5), http://pythonhosted.org/uncertainties (2020).
Andrew J. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Trans. Inf. Theory 13, 260 (1967). IETTAW 0018-9448 10.1109/TIT.1967.1054010
Joe Bayley, Chris Messenger, and Graham Woan, Robust machine learning algorithm to search for continuous gravitational waves, Phys. Rev. D 102, 083024 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.083024
Joe Bayley, Non-parametric and machine learning techniques for continuous gravitational wave searches, Ph.D. thesis, University of Glasgow, 2020.
Hunter Gabbard, Chris Messenger, Ik Siong Heng, Francesco Tonolini, and Roderick Murray-Smith, Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy, Nat. Phys. 18, 112 (2022). NPAHAX 1745-2473 10.1038/s41567-021-01425-7
Joe Bayley, Chris Messenger, and Graham Woan (to be published).
C. Palomba, Simulation of a population of isolated neutron stars evolving through the emission of gravitational waves, Mon. Not. R. Astron. Soc. 359, 1150 (2005). MNRAA4 0035-8711 10.1111/j.1365-2966.2005.08975.x
Berit Behnke, Maria Alessandra Papa, and Reinhard Prix, Postprocessing methods used in the search for continuous gravitational-wave signals from the Galactic Center, Phys. Rev. D 91, 064007 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.064007
Christoph Dreissigacker, Reinhard Prix, and Karl Wette, Fast and accurate sensitivity estimation for continuous-gravitational-wave searches, Phys. Rev. D 98, 084058 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.084058
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12, 2825 (2011), https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf.
Vladimir Dergachev and Maria Alessandra Papa, The search for continuous gravitational waves from small-ellipticity sources at low frequencies, Phys. Rev. D 104, 043003 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.043003
R. Abbott, All-sky, all-frequency directional search for persistent gravitational-waves from Advanced LIGO's and Advanced Virgo's first three observing runs, Phys. Rev. D 105, 122001 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.105.122001
Greg Ushomirsky, Curt Cutler, and Lars Bildsten, Deformations of accreting neutron star crusts and gravitational wave emission, Mon. Not. R. Astron. Soc. 319, 902 (2000). MNRAA4 0035-8711 10.1046/j.1365-8711.2000.03938.x
B. Haskell, D. I. Jones, and N. Andersson, Mountains on neutron stars: Accreted versus non-accreted crusts, Mon. Not. R. Astron. Soc. 373, 1423 (2006). MNRAA4 0035-8711 10.1111/j.1365-2966.2006.10998.x
Nathan K. Johnson-McDaniel and Benjamin J. Owen, Maximum elastic deformations of relativistic stars, Phys. Rev. D 88, 044004 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.88.044004
Fabian Gittins and Nils Andersson, Modelling neutron star mountains in relativity, Mon. Not. R. Astron. Soc. 507, 116 (2021). MNRAA4 0035-8711 10.1093/mnras/stab2048
F. Gittins, N. Andersson, and D. I. Jones, Modelling neutron star mountains, Mon. Not. R. Astron. Soc. 500, 5570 (2020). MNRAA4 0035-8711 10.1093/mnras/staa3635
A. G. Suvorov, A. Mastrano, and U. Geppert, Gravitational radiation from neutron stars deformed by crustal Hall drift, Mon. Not. R. Astron. Soc. 459, 3407 (2016). MNRAA4 0035-8711 10.1093/mnras/stw909
B. P. Abbott, Searches for gravitational waves from known pulsars at two harmonics in 2015-2017 LIGO data, Astrophys. J. 879, 10 (2019). ASJOAB 0004-637X 10.3847/1538-4357/ab20cb
Christian T. Byrnes, Mark Hindmarsh, Sam Young, and Michael R. S. Hawkins, Primordial black holes with an accurate QCD equation of state, J. Cosmol. Astropart. Phys. 08 (2018) 041. JCAPBP 1475-7516 10.1088/1475-7516/2018/08/041
Martti Raidal, Christian Spethmann, Ville Vaskonen, and Hardi Veermäe, Formation and evolution of primordial black hole binaries in the early universe, J. Cosmol. Astropart. Phys. 02 (2019) 018. JCAPBP 1475-7516 10.1088/1475-7516/2019/02/018
Gert Hütsi, Martti Raidal, Ville Vaskonen, and Hardi Veermäe, Two populations of LIGO-Virgo black holes, J. Cosmol. Astropart. Phys. 03 (2021) 068. JCAPBP 1475-7516 10.1088/1475-7516/2021/03/068