Combinatorics on words; Pascal's triangle; Sierpinski’s triangle; Constructible regular polygon; Fermat numbers; Regular sequences; Automatic sequences; Base-p expansions; Pascal’s pyramid; Binomial coefficients; Evil and odious numbers; Nim sum
Résumé :
[en] We consider the sequence of integers whose nth term has base-p expansion given by the nth row of Pascal's triangle modulo p (where p is a prime number). We first present and generalize well-known relations concerning this sequence. Then, with the great help of Sloane's On-Line Encyclopedia of Integer Sequences, we show that it appears naturally as a subsequence of a 2-regular sequence. Its study provides interesting relations and surprisingly involves odious and evil numbers, Nim-sum and even Gray codes. Furthermore, we examine similar sequences emerging from prime numbers involving alternating sum-of-digits modulo p. This note ends with a discussion about Pascal's pyramid involving trinomial coefficients.
Disciplines :
Mathématiques
Auteur, co-auteur :
Mathonet, Pierre ; Université de Liège - ULiège > Département de mathématique > Géométrie différentielle
Rigo, Michel ; Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Stipulanti, Manon ; Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Zenaïdi, Naïm ; Université de Liège - ULiège > Département de mathématique > Département de mathématique
Langue du document :
Anglais
Titre :
On digital sequences associated with Pascal's triangle
Allouche, J.-P., Shallit, J.: The ubiquitous Prouhet–Thue–Morse sequence. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications (Singapore, 1998). Springer Series Discrete Mathematics and Theoretical Computer Science, pp. 1–16. Springer, London (1999)
Allouche, J.-P., von Haeseler, F., Peitgen, H.-O., Skordev, G.: Linear cellular automata, finite automata and Pascal’s triangle. Disc. Appl. Math. 66, 1–22 (1996) DOI: 10.1016/0166-218X(94)00132-W
Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p -recognizable sets of integers. Bull. Belg. Math. Soc. Simon Stevin 1, 191–238 (1994)
Carpi, A., Maggi, C.: On synchronized sequences and their separators. Theor. Inform. Appl. 35, 513–524 (2001) DOI: 10.1051/ita:2001129
Charlier, É., Rigo, M., Steiner, W.: Abstract numeration systems on bounded languages and multiplication by a constant. Integers, vol. 8, paper #A35 (2008)
Conway, J.H., Guy, R.K.: The Book of Numbers. Copernicus, New York (1996) DOI: 10.1007/978-1-4612-4072-3
Cox, D.A.: Galois Theory, Pure and Applied Mathematics, 2nd edn. John Wiley & Sons, Hoboken, NJ (2012) DOI: 10.1002/9781118218457
Gardner, M.: Mathematical Carnival. Mathematical Association of America, Washington, DC (1989)
Granville, A.: Arithmetic properties of binomial coefficients I: binomial coefficients modulo prime powers. In: Canadian Mathematical Society Conference Proceedings, vol. 20, pp. 253–275 (1997)
Hewgill, D.: A relationship between Pascal’s triangle and Fermat’s numbers. Fibonacci Q. 15, 183–184 (1977)
Katona, G.: A theorem on finite sets. In: Theory of Graphs, Proceedings of the Colloquium, Tihany, Hungary, pp. 187–207 (1966)
Křížek, M., Luca, F., Lawrence, S.: 17 Lectures on Fermat Numbers. From Number Theory to Geometry. CMS Books in Mathematics. Springer-Verlag, New York (2001) DOI: 10.1007/978-0-387-21850-2
Leroy, J., Rigo, M., Stipulanti, M.: Generalized Pascal triangle for binomial coefficients of words. Adv. Appl. Math. 80, 24–47 (2016) DOI: 10.1016/j.aam.2016.04.006
Nguyen, H.D.: A mixing of Prouhet–Thue–Morse sequences and Rademacher functions. Integers, vol. 15, paper #A14 (2015)
Shevelev, V.: On Stephan’s conjectures concerning Pascal triangle modulo 2 and their polynomial generalization. J. Algebra Number Theory: Adv. Appl. 7, 11–29 (2012)
Sloane, N., et al.: The on-line encyclopedia of integer sequences. http://oeis.org
von Haeseler, F., Peitgen, H.-O., Skordev, G.: Pascal’s triangle, dynamical systems and attractors. Ergod. Theory Dyn. Syst. 12, 479–486 (1992) DOI: 10.1017/S0143385700006908