A. Abdala, I. Alvarez, H. Brossel, et al. (2019) BLV: Lessons on vaccine development. Retrovirology 16 1-6
A. Achachi, A. Florins, N. Gillet, et al. (2005) Valproate activates bovine leukemia virus gene expression, triggers apoptosis, and induces leukemia/lymphoma regression in vivo. Proceedings of the National Academy of Sciences of the United States of America 102(29), 10309-10314
E. Adam, P. Kerkhofs, M. Mammerickx, et al. (1994) Involvement of the cyclic AMP-responsive element binding protein in bovine leukemia virus expression in vivo. Journal of Virology 68(9), 5845-5853
Y. Aida, H. Murakami, M. Takahashi and S.-N. Takeshima (2013) Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Frontiers in Microbiology 4 328
L. Bai, H. Sato, Y. Kubo, S. Wada and Y. Aida (2019) CAT1/SLC7A1 acts as a cellular receptor for bovine leukemia virus infection. FASEB Journal 33 14516-14527
P.Y. Barez, A. de Brogniez, A. Carpentier, et al. (2015) Recent advances in BLV research. Viruses 7 6080-6088
P.C. Bartlett, L.M. Sordillo, T.M. Byrem, et al. (2014) Options for the control of bovine leukemia virus in dairy cattle. Journal of the American Veterinary Medical Association 244 914-922
J.M. Burke, R.P. Kincaid, R.M. Nottingham, A.M. Lambowitz and C.S. Sullivan (2016) DUSP11 activity on triphosphorylated transcripts promotes Argonaute association with noncanonical viral microRNAs and regulates steady-state levels of cellular noncoding RNAs. Genes Development 30(18), 2076-2092
A. Burny, C. Bruck, V. Cleuter, et al. (1985) Bovine Leukemia Virus, a versatile agent with various pathogenic effects in various animal species. Cancer Research 45(suppl), 4578-4583
A. Burny, Y. Cleuter, R. Kettmann, et al. (1988) Bovine leukaemia: Facts and hypotheses derived from the study of an infectious cancer. Veterinary Microbiology 17(3), 197-218
C. Calomme, A. Dekoninck, S. Nizet, et al. (2004) Overlapping CRE and E box motifs in the enhancer sequences of the bovine leukemia virus 5′ long terminal repeat are critical for basal and acetylation-dependent transcriptional activity of the viral promoter: implications for viral latency. Journal of Virology 78(24), 13848-13864
A. de Brogniez, A.B. Bouzar, J.-R. Jacques, et al. (2015) Mutation of a single envelope N-linked glycosylation site enhances the pathogenicity of bovine leukemia virus. Journal of Virology 89(17), 8945-8956
D. Derse (1988) Trans-acting regulation of bovine leukemia virus mRNA processing. Journal of Virology 62(4), 1115-1119
K. Durkin, N. Rosewick, M. Artesi, et al. (2016) Identification and characterization of novel Bovine Leukemia Virus (BLV) antisense transcripts reveals their constitutive expression in leukemic and pre-leukemic clones. bioRxiv 1-31
EFSA AHAW Panel (2015) Scientific opinion on enzootic bovine leukosis. European Food Safety Authority. EFSA Journal 13 4188
J.F. Ferrer and C.E. Piper (1981) Role of colostrum and milk in the natural transmission of the bovine leukemia virus. Cancer Research 41(12), 4406-4409
A. Florins, A. de Brogniez, M. Elemans, et al. (2011) Viral expression directs the fate of B cells in bovine leukemia virus-infected sheep. Journal of Virology 86(1), 621-624
A. Florins, N. Gillet, B. Asquith, et al. (2007) Cell dynamics and immune response to BLV infection: A unifying model. Frontiers in Bioscience 12 1520-1531
A. Florins, N. Gillet, M. Boxus, et al. (2007) Even attenuated bovine leukemia virus proviruses can be pathogenic in sheep. J Virol 81(18), 10195-10200
A. Florins, N. Gillet, B. Asquith, et al. (2006) Spleen-dependent turnover of CD11b peripheral blood B lymphocytes in BLV-infected sheep. Journal of Virology 80(24), 11998-12008
A. Florins, M. Reichert, B. Asquith, et al. (2009) Earlier onset of δ-retrovirus-induced leukemia after splenectomy. PLoS One 4(9), 1-7
M.C. Frie, C.J. Droscha, A.E. Greenlick and P.M. Coussens (2018) MicroRNAs encoded by bovine leukemia virus (BLV) are associated with reduced expression of B cell transcriptional regulators in dairy cattle naturally infected with BLV. Frontiers in Veterinary Science 4(January), 1-16
H. Gazon, P. Chauhan, M. Hamaidia, et al. (2018) How does HTLV-1 undergo oncogene-dependent replication despite a strong immune response? Frontiers in Microbiology 8(January), 1-6
N. Gillet, A. Florins, M. Boxus, et al. (2007) Mechanisms of leukemogenesis induced by bovine leukemia virus: Prospects for novel anti-retroviral therapies in human. Retrovirology 4 18
N.A. Gillet, G. Gutierrez, S.M. Rodriguez, et al. (2013) Massive depletion of bovine leukemia virus proviral clones located in genomic transcriptionally active sites during primary infection. PLoS Pathogens 9(10), e1003687
N.A. Gillet, M. Hamaidia, A. de Brogniez, et al. (2016) Bovine leukemia virus small noncoding RNAs are functional elements that regulate replication and contribute to oncogenesis in vivo. PLoS Pathogens 12(4), e1005588
G. Gutiérrez, I. Alvarez, N. Fondevila, et al. (2009) Detection of bovine leukemia virus specific antibodies using recombinant p24-ELISA. Veterinary Microbiology 137(3-4), 224-234
G. Gutierrez, S.M. Rodríguez, A. De Brogniez, et al. (2014) Vaccination against δ-retroviruses: The bovine leukemia virus paradigm. Viruses 6(6), 2416-2427
T. Hayashi, H. Mekata, S. SekiguchiI, et al. (2017) Cattle with the BoLA class II DRB3*0902 allele have significantly lower bovine leukemia proviral loads. The Journal of Veterinary Medical Science 79(9), 1552-1555
J.P. Jaworski, A. Pluta, M. Rola-Luszczak, et al. (2018) Interlaboratory comparison of six real-time PCR assays for detection of bovine leukemia virus proviral DNA. Journal of Clinical Microbiology 56 1-11
M. Jimba, S. Takeshima S.nosuke, K. Matoba, D. Endoh and Y. Aida (2010) BLV-CoCoMo-qPCR: Quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm. Retrovirology 7 91
H. Kabeya, K. Ohashi, C. Sugimoto and M. Onuma (1999) Characterization of immune responses caused by bovine leukemia virus envelope peptides in sheep. The Journal of Veterinary Medical Science 61(5), 475-480
P. Kerkhofs, E. Adam, L. Droogmans, et al. (1996) Cellular pathways involved in the ex vivo expression of bovine leukemia virus. Journal of Virology 70(4), 2170-2177
P. Kerkhofs, H. Heremans, A. Burny, R. Kettmann and L. Willems (1998) In vitro and in vivo oncogenic potential of bovine leukemia virus G4 protein. Journal of Virology 72(3), 2554-2559
R.P. Kincaid, J.M. Burke and C.S. Sullivan (2012) RNA virus microRNA that mimics a B-cell oncomiR. Proceedings of the National Academy of Sciences of the United States of America 109(8), 3077-3082
S. Konnai, S. Suzuki, T. Shirai, et al. (2013) Enhanced expression of LAG-3 on lymphocyte subpopulations from persistently lymphocytotic cattle infected with bovine leukemia virus. Comparative Immunology, Microbiology and Infectious Diseases 36(1), 63-69
A. Kuczewski, H. Hogeveen, K. Orsel, et al. (2019) Economic evaluation of 4 bovine leukemia virus control strategies for Alberta dairy farms. Journal of Dairy Science 102(3), 2578-2592
R.M. LaDronka, S. Ainsworth, M.J. Wilkins, et al. (2018) Prevalence of bovine leukemia virus antibodies in US dairy cattle. Veterinary Medicine International 2018 5831278
D.M. Lagarias and K. Radke (1989) Transcriptional activation of bovine leukemia virus in blood cells from experimentally infected, asymptomatic sheep with latent infections. Journal of Virology 63(5), 2099-2107
L. Lefebvre, A. Vanderplasschen, V. Ciminale, et al. (2002) Oncoviral bovine leukemia virus G4 and human T-cell leukemia virus type 1 p13II accessory proteins interact with farnesyl pyrophosphate synthetase. Journal of Virology 76(3), 1400-1414
S. Meas, K. Ohashi, S. Tum, et al. (2000) Seroprevalence of bovine immunodeficiency virus and bovine leukemia virus in draught animals in Cambodia. The Journal of Veterinary Medical Science 62(7), 779-781
B. Norby, P.C. Bartlett, T.M. Byrem and R.J. Erskine (2016) Effect of infection with bovine leukemia virus on milk production in Michigan dairy cows. Journal of Dairy Science 99 2043-2052
D. Portetelle, K. Limbach, A. Burny, et al. (1991) Recombinant vaccinia virus expression of the bovine leukaemia virus envelope gene and protection of immunized sheep against infection. Vaccine 9(3), 194-200
D. Pyeon, K.L. O’Reilly and G.A. Splitter (1996) Increased interleukin-10 mRNA expression in tumor-bearing or persistently lymphocytotic animals infected with bovine leukemia virus. Journal of Virology 70 5706-5710
S.M. Rodríguez, A. Florins, N. Gillet, et al. (2011) Preventive and therapeutic strategies for bovine leukemia virus: lessons for HTLV. Viruses 3(7), 1210-1248
N. Rosewick, K. Durkin, M. Artesi, et al. (2017) Cis-perturbation of cancer drivers by the HTLV-1/BLV proviruses is an early determinant of leukemogenesis. Nature Communications 8 15264
N. Rosewick, M. Momont, K. Durkin, et al. (2013) Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proceedings of the National Academy of Sciences of the United States of America 110 2306-2311
V.J. Ruggiero and P.C. Bartlett (2019) Control of bovine leukemia virus in three US dairy herds by culling ELISA-positive cows. Veterinary Medicine International 2019
V.J. Ruggiero, O.J. Benitez, Y.L. Tsai, et al. (2018) On-site detection of bovine leukemia virus by a field-deployable automatic nucleic extraction plus insulated isothermal polymerase chain reaction system. Journal of Virological Methods 259 116-121
R. Safari, M. Hamaidia, A. de Brogniez, N. Gillet and L. Willems (2017) Cis-drivers and trans-drivers of bovine leukemia virus oncogenesis. Current Opinion in Virology 26 15-19
Safari, R., Jacques, J., Brostaux, Y., Willems, L., 2020. Ablation of non-coding RNAs affects bovine leukemia virus B lymphocyte proliferation and abrogates oncogenesis, PLoS Pathogens 16 (5), e1008502
S. Suzuki, S. Konnai, T. Okagawa, et al. (2013) Expression analysis of Foxp3 in T cells from bovine leukemia virus infected cattle. Microbiology and Immunology 57(8), 600-604
S. Tajima and Y. Aida (2000) The region between amino acids 245 and 265 of the bovine leukemia virus (BLV) tax protein restricts transactivation not only via the BLV enhancer but also via other retrovirus enhancers. Journal of Virology 74(23), 10939-10949
S.N. Takeshima, S. Sasaki, P. Meripet, Y. Sugimoto and Y. Aida (2017) Single nucleotide polymorphisms in the bovine MHC region of Japanese Black cattle are associated with bovine leukemia virus proviral load. Retrovirology 14 1-7
J.-C. Twizere, V. Kruys, L. Lefèbvre, et al. (2003) Interaction of retroviral tax oncoproteins with tristetraprolin and regulation of tumor necrosis factor-α expression. Journal of the National Cancer Institute 95(24), 1846-1859
B. Van Driessche, A. Rodari, N. Delacourt, et al. (2016) Characterization of new RNA polymerase III and RNA polymerase II transcriptional promoters in the Bovine Leukemia Virus genome. Scientific Reports 6 31125
L. Willems, A. Burny, D. Collete, et al. (2000) Genetic determinants of bovine leukemia virus pathogenesis. AIDS Research and Human Retroviruses 16(16), 1787-1795
L. Willems, J.S. Gatot, M. Mammerickx, et al. (1995) The YXXL signalling motifs of the bovine leukemia virus transmembrane protein are required for in vivo infection and maintenance of high viral loads. Journal of Virology 69(7), 4137-4141
L. Willems, A. Gegonne, G. Chen, et al. (1987) The bovine leukemia virus p34 is a transactivator protein. EMBO Journal 6(11), 3385-3389
L. Willems, C. Grimonpont, P. Kerkhofs, et al. (1998) Phosphorylation of bovine leukemia virus Tax protein is required for in vitro transformation but not for transactivation. Oncogene 16(17), 2165-2176
L. Willems, H. Heremans, G. Chen, et al. (1990) Cooperation between bovine leukaemia virus transactivator protein and Ha-ras oncogene product in cellular transformation. The EMBO Journal 9(5), 1577-1581
L. Willems, P. Kerkhofs, F. Dequiedt, et al. (1994) Attenuation of bovine leukemia virus by deletion of R3 and G4 open reading frames. Proceedings of the National Academy of Sciences of the United States of America 91(24), 11532-11536