Agard, M., Asakrah, S., Morici, L.A., PGE(2) suppression of innate immunity during mucosal bacterial infection. Front. Cell. Infect. Microbiol., 3, 2013, 45.
Baratelli, F., Lin, Y., Zhu, L., Yang, S.C., Heuzé-Vourc'h, N., Zeng, G., Reckamp, K., Dohadwala, M., Sharma, S., Dubinett, S.M., Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J. Immunol. 175 (2005), 1483–1490.
Boniface, K., Bak-Jensen, K.S., Li, Y., Blumenschein, W.M., McGeachy, M.J., McClanahan, T.K., McKenzie, B.S., Kastelein, R.A., Cua, D.J., de Waal Malefyt, R., Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J. Exp. Med. 206 (2009), 535–548.
Cai, Y., Shen, X., Ding, C., Qi, C., Li, K., Li, X., Jala, V.R., Zhang, H.G., Wang, T., Zheng, J., Yan, J., Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35 (2011), 596–610.
Chen, Y.S., Chen, I.B., Pham, G., Shao, T.Y., Bangar, H., Way, S.S., Haslam, D.B., IL-17-producing γδ T cells protect against Clostridium difficile infection. J. Clin. Invest. 130 (2020), 2377–2390.
Chizzolini, C., Chicheportiche, R., Alvarez, M., de Rham, C., Roux-Lombard, P., Ferrari-Lacraz, S., Dayer, J.M., Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood 112 (2008), 3696–3703.
Cho, J.S., Pietras, E.M., Garcia, N.C., Ramos, R.I., Farzam, D.M., Monroe, H.R., Magorien, J.E., Blauvelt, A., Kolls, J.K., Cheung, A.L., et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Invest. 120 (2010), 1762–1773.
Crittenden, S., Goepp, M., Pollock, J., Robb, C.T., Smyth, D.J., Zhou, Y., Andrews, R., Tyrrell, V., Gkikas, K., Adima, A., et al. Prostaglandin E2 promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells. Sci. Adv., 7, 2021, eabd7954.
Cua, D.J., Tato, C.M., Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10 (2010), 479–489.
Du, B., Zhu, M., Li, Y., Li, G., Xi, X., The prostaglandin E2 increases the production of IL-17 and the expression of costimulatory molecules on γδ T cells in rheumatoid arthritis. Scand. J. Immunol., 91, 2020, e12872.
Duan, J., Chung, H., Troy, E., Kasper, D.L., Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells. Cell Host Microbe 7 (2010), 140–150.
Duffin, R., O'Connor, R.A., Crittenden, S., Forster, T., Yu, C., Zheng, X., Smyth, D., Robb, C.T., Rossi, F., Skouras, C., et al. Prostaglandin E2 constrains systemic inflammation through an innate lymphoid cell-IL-22 axis. Science 351 (2016), 1333–1338.
Erb-Downward, J.R., Huffnagle, G.B., Cryptococcus neoformans produces authentic prostaglandin E2 without a cyclooxygenase. Eukaryot. Cell 6 (2007), 346–350.
Fiala, G.J., Schaffer, A.M., Merches, K., Morath, A., Swann, J., Herr, L.A., Hils, M., Esser, C., Minguet, S., Schamel, W.W.A., Proximal Lck Promoter-Driven Cre Function Is Limited in Neonatal and Ineffective in Adult γδ T Cell Development. J. Immunol. 203 (2019), 569–579.
Gray, E.E., Ramírez-Valle, F., Xu, Y., Wu, S., Wu, Z., Karjalainen, K.E., Cyster, J.G., Deficiency in IL-17-committed Vγ4(+) γδ T cells in a spontaneous Sox13-mutant CD45.1(+) congenic mouse substrain provides protection from dermatitis. Nat. Immunol. 14 (2013), 584–592.
Hellewell, P.G., Jose, P.J., Williams, T.J., Inflammatory mechanisms in the passive cutaneous anaphylactic reaction in the rabbit: evidence that novel mediators are involved. Br. J. Pharmacol. 107 (1992), 1163–1172.
Huang, M., Sharma, S., Mao, J.T., Dubinett, S.M., Non-small cell lung cancer-derived soluble mediators and prostaglandin E2 enhance peripheral blood lymphocyte IL-10 transcription and protein production. J. Immunol. 157 (1996), 5512–5520.
Jaffar, Z., Ferrini, M.E., Shaw, P.K., FitzGerald, G.A., Roberts, K., Prostaglandin I2promotes the development of IL-17-producing γδ T cells that associate with the epithelium during allergic lung inflammation. J. Immunol. 187 (2011), 5380–5391.
Jain, U., Lai, C.W., Xiong, S., Goodwin, V.M., Lu, Q., Muegge, B.D., Christophi, G.P., Vandussen, K.L., Cummings, B.P., Young, E., et al. Temporal Regulation of the Bacterial Metabolite Deoxycholate during Colonic Repair Is Critical for Crypt Regeneration. Cell Host Microbe. 24 (2018), 353–363.e5.
Jensen, K.D., Su, X., Shin, S., Li, L., Youssef, S., Yamasaki, S., Steinman, L., Saito, T., Locksley, R.M., Davis, M.M., et al. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 29 (2008), 90–100.
Kalinski, P., Regulation of immune responses by prostaglandin E2. J. Immunol. 188 (2012), 21–28.
Lee, J., Aoki, T., Thumkeo, D., Siriwach, R., Yao, C., Narumiya, S., T cell-intrinsic prostaglandin E2-EP2/EP4 signaling is critical in pathogenic TH17 cell-driven inflammation. J. Allergy Clin. Immunol. 143 (2019), 631–643.
Li, F., Hao, X., Chen, Y., Bai, L., Gao, X., Lian, Z., Wei, H., Sun, R., Tian, Z., Erratum: The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner. Nat. Commun., 8, 2017, 15265.
Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (2001), 402–408.
Mabuchi, T., Singh, T.P., Takekoshi, T., Jia, G.F., Wu, X., Kao, M.C., Weiss, I., Farber, J.M., Hwang, S.T., CCR6 is required for epidermal trafficking of γδ-T cells in an IL-23-induced model of psoriasiform dermatitis. J. Invest. Dermatol. 133 (2013), 164–171.
Manca, C., Boubertakh, B., Leblanc, N., Deschênes, T., Lacroix, S., Martin, C., Houde, A., Veilleux, A., Flamand, N., Muccioli, G.G., et al. Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling. J. Lipid Res. 61 (2020), 70–85.
Martin, B., Hirota, K., Cua, D.J., Stockinger, B., Veldhoen, M., Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31 (2009), 321–330.
McKenzie, D.R., Kara, E.E., Bastow, C.R., Tyllis, T.S., Fenix, K.A., Gregor, C.E., Wilson, J.J., Babb, R., Paton, J.C., Kallies, A., et al. IL-17-producing γδ T cells switch migratory patterns between resting and activated states. Nat. Commun., 8, 2017, 15632.
Medeiros, A.I., Serezani, C.H., Lee, S.P., Peters-Golden, M., Efferocytosis impairs pulmonary macrophage and lung antibacterial function via PGE2/EP2 signaling. J. Exp. Med. 206 (2009), 61–68.
Mielke, L.A., Jones, S.A., Raverdeau, M., Higgs, R., Stefanska, A., Groom, J.R., Misiak, A., Dungan, L.S., Sutton, C.E., Streubel, G., et al. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210 (2013), 1117–1124.
Miyoshi, H., VanDussen, K.L., Malvin, N.P., Ryu, S.H., Wang, Y., Sonnek, N.M., Lai, C.Y., Stappenbeck, T.S., Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. EMBO 36 (2017), 5–24.
Montrose, D.C., Nakanishi, M., Murphy, R.C., Zarini, S., McAleer, J.P., Vella, A.T., Rosenberg, D.W., The role of PGE2 in intestinal inflammation and tumorigenesis. Prostaglandins Other Lipid Mediat. 116-117 (2015), 26–36.
Muñoz-Ruiz, M., Ribot, J.C., Grosso, A.R., Gonçalves-Sousa, N., Pamplona, A., Pennington, D.J., Regueiro, J.R., Fernández-Malavé, E., Silva-Santos, B., TCR signal strength controls thymic differentiation of discrete proinflammatory γδ T cell subsets. Nat. Immunol. 17 (2016), 721–727.
Muschaweckh, A., Petermann, F., Korn, T., IL-1β and IL-23 Promote Extrathymic Commitment of CD27+CD122- γδ T Cells to γδT17 Cells. J. Immunol. 199 (2017), 2668–2679.
Napolitani, G., Acosta-Rodriguez, E.V., Lanzavecchia, A., Sallusto, F., Prostaglandin E2 enhances Th17 responses via modulation of IL-17 and IFN-gamma production by memory CD4+ T cells. Eur. J. Immunol. 39 (2009), 1301–1312.
Papotto, P.H., Gonçalves-Sousa, N., Schmolka, N., Iseppon, A., Mensurado, S., Stockinger, B., Ribot, J.C., Silva-Santos, B., IL-23 drives differentiation of peripheral γδ17 T cells from adult bone marrow-derived precursors. EMBO Rep. 18 (2017), 1957–1967.
Papotto, P.H., Ribot, J.C., Silva-Santos, B., IL-17+ γδ T cells as kick-starters of inflammation. Nat. Immunol. 18 (2017), 604–611.
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., Medzhitov, R., Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118 (2004), 229–241.
Ribot, J.C., deBarros, A., Pang, D.J., Neves, J.F., Peperzak, V., Roberts, S.J., Girardi, M., Borst, J., Hayday, A.C., Pennington, D.J., Silva-Santos, B., CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat. Immunol. 10 (2009), 427–436.
Ridaura, V.K., Bouladoux, N., Claesen, J., Chen, Y.E., Byrd, A.L., Constantinides, M.G., Merrill, E.D., Tamoutounour, S., Fischbach, M.A., Belkaid, Y., Contextual control of skin immunity and inflammation by Corynebacterium. J. Exp. Med. 215 (2018), 785–799.
Roulis, M., Kaklamanos, A., Schernthanner, M., Bielecki, P., Zhao, J., Kaffe, E., Frommelt, L.S., Qu, R., Knapp, M.S., Henriques, A., et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 580 (2020), 524–529.
Sandrock, I., Reinhardt, A., Ravens, S., Binz, C., Wilharm, A., Martins, J., Oberdörfer, L., Tan, L., Lienenklaus, S., Zhang, B., et al. Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing γδ T cells. J. Exp. Med. 215 (2018), 3006–3018.
Sheibanie, A.F., Tadmori, I., Jing, H., Vassiliou, E., Ganea, D., Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J. 18 (2004), 1318–1320.
Sheridan, B.S., Romagnoli, P.A., Pham, Q.M., Fu, H.H., Alonzo, F. 3rd, Schubert, W.D., Freitag, N.E., Lefrancois, L., gammadelta T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39 (2013), 184–195.
Shouval, D.S., Biswas, A., Goettel, J.A., McCann, K., Conaway, E., Redhu, N.S., Mascanfroni, I.D., Al Adham, Z., Lavoie, S., Ibourk, M., et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40 (2014), 706–719.
Sutton, C.E., Lalor, S.J., Sweeney, C.M., Brereton, C.F., Lavelle, E.C., Mills, K.H., Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31 (2009), 331–341.
Valdez, P.A., Vithayathil, P.J., Janelsins, B.M., Shaffer, A.L., Williamson, P.R., Datta, S.K., Prostaglandin E2 suppresses antifungal immunity by inhibiting interferon regulatory factor 4 function and interleukin-17 expression in T cells. Immunity 36 (2012), 668–679.
van der Fits, L., Mourits, S., Voerman, J.S., Kant, M., Boon, L., Laman, J.D., Cornelissen, F., Mus, A.M., Florencia, E., Prens, E.P., Lubberts, E., Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182 (2009), 5836–5845.
Viennois, E., Chen, F., Laroui, H., Baker, M.T., Merlin, D., Dextran sodium sulfate inhibits the activities of both polymerase and reverse transcriptase: lithium chloride purification, a rapid and efficient technique to purify RNA. BMC Res. Notes, 6, 2013, 360.
Wedmore, C.V., Williams, T.J., Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature 289 (1981), 646–650.
Yao, C., Sakata, D., Esaki, Y., Li, Y., Matsuoka, T., Kuroiwa, K., Sugimoto, Y., Narumiya, S., Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat. Med. 15 (2009), 633–640.
Zhang, H., Carnevale, G., Polese, B., Simard, M., Thurairajah, B., Khan, N., Gentile, M.E., Fontes, G., Vinh, D.C., Pouliot, R., King, I.L., CD109 Restrains Activation of Cutaneous IL-17-Producing γδ T Cells by Commensal Microbiota. Cell Rep. 29 (2019), 391–405.e5.
Zuberbuehler, M.K., Parker, M.E., Wheaton, J.D., Espinosa, J.R., Salzler, H.R., Park, E., Ciofani, M., The transcription factor c-Maf is essential for the commitment of IL-17-producing γδ T cells. Nat. Immunol. 20 (2019), 73–85.