Roccia, B. A.; Grupo de Matemática Aplicada, Universidad Nacional de Río Cuarto, Ruta Nacional 36, km 601, Río Cuarto, Argentina, Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT), UNC - CONICET, Córdoba, Argentina
Cosimo, A.; Centro de Investigación de Métodos Computacionales (CIMEC), UNL - CONICET, Santa Fe, Argentina, Department of Aerospace and Mechanical Engineering, University of Liège, Allée de la, Découverte 9, Liège, 4000, Belgium
Preidikman, S.; Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT), UNC - CONICET, Córdoba, Argentina
Bruls, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques
Language :
English
Title :
Numerical models for the static analysis of cable structures used in airborne wind turbines
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bertrand, C., Acary, V., Lamarque, C.H., Ture Savadkoohi, A.: A robust and efficient numerical finite element method for cables (2020). https://hal.inria.fr/hal-02439982. Working paper or preprint
Bosman, R., Reid, V., Vlasblom, M., Smeets, P.: Airborne wind energy tethers with high-modulus polyethylene fibers. In: Airborne Wind Energy, pp. 563–585. Springer, Heidelberg (2013)
Cherubini, A., Papini, A., Vertechy, R., Fontana, M.: Airborne wind energy systems: a review of the technologies. Renew. Sustainable Energy Rev. 51, 1461–1476 (2015)
Impollonia, N., Ricciardi, G., Saitta, F.: Statics of elastic cables under 3d point forces.Int.J.SolidsStruct.48(9), 1268–1276 (2011)
Loyd, J.: Crosswind kite power. J. Energy 67(3), 106–111 (1980)
Milutinović, M., Kranjčević, N., Deur, J.: Multi-mass dynamic model of a variablelength tether used in a high altitude wind energy system. Energy Conversion Manage. 87, 1141–1150 (2014)
Müller, A., Terze, Z.: The significance of the configuration space lie group for the constraint satisfaction in numerical time integration of multibody systems. Mech. Mach. Theory 82, 173–202 (2014)
Peters, S.: Handbook of Composites. Springer, Cham (2013)
Saeed, M., Kim, M.H.: Aerodynamic performance analysis of an airborne wind turbine system with NREL phase IV rotor. Energy Conversion Manage. 134, 278– 289 (2018)
Selig, J.: Geometric Fundamentals of Robotics, Monographs in Computer Science. Springer, New York (2005)
Sonneville, V., Cardona, A., Bruls, O.: Geometrically exact beam finite element formulated on the Special Euclidean group SE(3). Comput. Methods Appl. Mech. Eng. 268(1), 451–474 (2014)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.