[en] Consciousness transiently fades away during deep sleep, more stably under anesthesia, and sometimes permanently due to brain injury. The development of an index to quantify the level of consciousness across these different states is regarded as a key problem both in basic and clinical neuroscience. We argue that this problem is ill-defined since such an index would not exhaust all the relevant information about a given state of consciousness. While the level of consciousness can be taken to describe the actual brain state, a complete characterization should also include its potential behavior against external perturbations. We developed and analyzed whole-brain computational models to show that the stability of conscious states provides information complementary to their similarity to conscious wakefulness. Our work leads to a novel methodological framework to sort out different brain states by their stability and reversibility, and illustrates its usefulness to dissociate between physiological (sleep), pathological (brain-injured patients), and pharmacologically-induced (anesthesia) loss of consciousness.
Research Center/Unit :
CHU de Liège-Centre du Cerveau² - ULiège
Disciplines :
Neurosciences & behavior
Author, co-author :
Perl, Yonatan Sanz; University of Buenos Aires > Department of Physics
Pallavicini, Carla; University of Buenos Aires > Department of Physics
Ipiña, Ignacio Perez; University of Buenos Aires > Department of Physics
Demertzi, Athina ; Université de Liège - ULiège > GIGA Consciousness - Physiology of Cognition
BONHOMME, Vincent ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
Martial, Charlotte ; Université de Liège - ULiège > GIGA Consciousness - Coma Science Group
Panda, Rajanikant ; Université de Liège - ULiège > GIGA Consciousness - Coma Science Group
Annen, Jitka ; Université de Liège - ULiège > GIGA Consciousness - Coma Science Group ; CHU Liège - Central University Hospital of Liege > Centre du Cerveau²
Ibañez, Agustin; University of Buenos Aires
Kringelbach, Morten; University of Oxford > Department of Psychiatry
Deco, Gustavo; Universitat Pompeu Fabra
Laufs, Helmut; Goethe University > Department of Neurology and Brain Imaging Center
Sitt, Jacobo; Institut du Cerveau et de la Moelle epinière
Laureys, Steven ; Université de Liège - ULiège > GIGA Consciousness - Coma Science Group
Tagliazucchi, Enzo; University of Buenos Aires > Department of Physics
Mashour G. Roelfsema P., Changeux J., & Dehaene S. (2020). Conscious Processing and the Global Neuronal Workspace Hypothesis. Neuron, 105(5), 776-798. https://doi.org/10.1016/j.neuron.2020.01. 026 PMID: 32135090
Hobson J., Pace-Schott E., & Stickgold R. (2000). Dreaming and the brain: toward a cognitive neuroscience of conscious states. Behavioral and brain sciences, 23(6), 793-842.
Tassi P., & Muzet A. (2001). Defining the states of consciousness. Neuroscience & Biobehavioral Reviews, 25(2), 175-191. https://doi.org/10.1016/s0149-7634(01)00006-9 PMID: 11323082
Revonsuo A., Kallio S., & Sikka P. (2009). What is an altered state of consciousness? Philosophical Psychology, 22(2), 187-204.
Bayne T., Hohwy J., & Owen A. (2016). Are there levels of consciousness? Trends in cognitive sciences, 20(6), 405-413. https://doi.org/10.1016/j.tics.2016.03.009 PMID: 27101880
Hobson J., & Pace-Schott E. (2002). The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nature Reviews Neuroscience, 3(9), 679-693. https://doi.org/10.1038/ nrn915 PMID: 12209117
Alkire M., Hudetz A., & Tononi G. (2008). Consciousness and anesthesia. Science, 322(5903), 876-880. https://doi.org/10.1126/science.1149213 PMID: 18988836
Giacino J., Fins J., Laureys S., & Schiff N. (2014). Disorders of consciousness after acquired brain injury: the state of the science. Nature Reviews Neurology, 10(2), 99. https://doi.org/10.1038/nrneurol. 2013.279 PMID: 24468878
Giacino J., Kalmar K., & Whyte J. (2004). The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Archives of physical medicine and rehabilitation, 85(12), 2020-2029. https://doi.org/10.1016/j.apmr.2004.02.033 PMID: 15605342
Sigl J., & Chamoun N. (1994). An introduction to bispectral analysis for the electroencephalogram. Journal of clinical monitoring, 10(6), 392-404. https://doi.org/10.1007/BF01618421 PMID: 7836975
Laureys S., & Schiff N. (2012). Coma and consciousness: paradigms (re) framed by neuroimaging. Neuroimage, 61(2), 478-491. https://doi.org/10.1016/j.neuroimage.2011.12.041 PMID: 22227888
Casali A., Gosseries O., Rosanova M., Boly M., Sarasso S., Casali K. et al. (2013). A theoretically based index of consciousness independent of sensory processing and behavior. Science translational medicine, 5(198), 198ra105-198ra105. https://doi.org/10.1126/scitranslmed.3006294 PMID: 23946194
King J., Sitt J., Faugeras F., Rohaut B., El Karoui I., Cohen L., et al. (2013). Information sharing in the brain indexes consciousness in noncommunicative patients. Current Biology, 23(19), 1914-1919. https://doi.org/10.1016/j.cub.2013.07.075 PMID: 24076243
Sitt J., King J., El Karoui I., Rohaut B., Faugeras F., Gramfort A et al. (2014). Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain, 137 (8), 2258-2270 https://doi.org/10.1093/brain/awu141 PMID: 24919971
Schartner M., Seth A., Noirhomme Q., Boly M., Bruno M., Laureys, S., & Barrett, A. (2015). Complexity of multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia. PloS one, 10(8). https://doi.org/10.1371/journal.pone.0133532 PMID: 26252378
Tononi G., Boly M., Massimini M., & Koch C. (2016). Integrated information theory: from consciousness to its physical substrate. Nature Reviews Neuroscience, 17(7), 450-461 https://doi.org/10.1038/nrn. 2016.44 PMID: 27225071
Tegmark M. (2016). Improved measures of integrated information. PLoS computational biology, 12 (11). https://doi.org/10.1371/journal.pcbi.1005123 PMID: 27870846
Seth A., Barrett A. B., & Barnett L. (2011). Causal density and integrated information as measures of conscious level. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1952), 3748-3767. https://doi.org/10.1098/rsta.2011.0079 PMID: 21893526
Sporns O., Tononi G., & Kötter R. (2005). The human connectome: a structural description of the human brain. PLoS computational biology, 1(4). https://doi.org/10.1371/journal.pcbi.0010042 PMID: 16201007
Demertzi A., Tagliazucchi E., Dehaene S., Deco G., Barttfeld P., Raimondo F., et al. (2019). Human consciousness is supported by dynamic complex patterns of brain signal coordination. Science advances, 5(2), eaat7603. https://doi.org/10.1126/sciadv.aat7603 PMID: 30775433
Gosling S. D., Rentfrow P., & Swann W. Jr (2003). A very brief measure of the Big-Five personality domains. Journal of Research in personality, 37(6), 504-528.
Hampshire A., Highfield R., Parkin B., & Owen A. (2012). Fractionating human intelligence. Neuron, 76 (6), 1225-1237. https://doi.org/10.1016/j.neuron.2012.06.022 PMID: 23259956
Mayes R., & Horwitz A. (2005). DSM-III and the revolution in the classification of mental illness. Journal of the History of the Behavioral Sciences, 41(3), 249-26 https://doi.org/10.1002/jhbs.20103 PMID: 15981242
Bayne T., & Carter O. (2018). Dimensions of consciousness and the psychedelic state. Neuroscience of consciousness, 2018(1), niy008. https://doi.org/10.1093/nc/niy008 PMID: 30254752
Schartner M., Pigorini A., Gibbs S., Arnulfo G., Sarasso S., Barnett L., et al. (2017). Global and local complexity of intracranial EEG decreases during NREM sleep. Neuroscience of consciousness, 2017 (1), niw022. https://doi.org/10.1093/nc/niw022 PMID: 30042832
Tagliazucchi E., Chialvo D., Siniatchkin M., Amico E., Brichant J., Bonhomme V et al. (2016a). Largescale signatures of unconsciousness are consistent with a departure from critical dynamics. Journal of The Royal Society Interface, 13(114), 20151027.
Deco G., Cruzat J., Cabral J., Tagliazucchi E., Laufs H., Logothetis N., & Kringelbach M. L. (2019). Awakening: Predicting external stimulation to force transitions between different brain states. Proceedings of the National Academy of Sciences, 116(36), 18088-18097. https://doi.org/10.1073/pnas. 1905534116 PMID: 31427539
Pallavicini C., Vilas M., Villarreal M., Zamberlan F., Muthukumaraswamy S., Nutt D., et al. (2019). Spectral signatures of serotonergic psychedelics and glutamatergic dissociatives. NeuroImage, 200, 281-291 https://doi.org/10.1016/j.neuroimage.2019.06.053 PMID: 31247301
Ipiña I., Kehoe P., Kringelbach M., Laufs H., Ibañez A., Deco G et al. (2020). Modeling regional changes in dynamic stability during sleep and wakefulness. NeuroImage, 116833. https://doi.org/10.1016/j. neuroimage.2020.116833 PMID: 32289454
Damoiseaux J., Rombouts S., Barkhof F., Scheltens P., Stam C., Smith S., & Beckmann C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the national academy of sciences, 103(37), 13848-13853. https://doi.org/10.1073/pnas.0601417103 PMID: 16945915
Deco G., Cabral J., Saenger V., Boly M., Tagliazucchi E., Laufs H., et al. (2018a). Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states. Neuroimage, 169, 46-56.
Schnakers C., Vanhaudenhuyse A., Giacino J., Ventura M., Boly M., Majerus Set al. (2009). Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC neurology, 9(1), 35. https://doi.org/10.1186/1471-2377-9-35 PMID: 19622138
Mashour G., Orser B., & Avidan M. (2011). Intraoperative awareness. From neurobiology to clinical practice. Anesthesiology, 114, 1218-1233. https://doi.org/10.1097/ALN.0b013e31820fc9b6 PMID: 21464699
Angelakis E., Liouta E., Andreadis N., Korfias S., Ktonas P., Stranjalis G., & Sakas D. (2014). Transcranial direct current stimulation effects in disorders of consciousness. Archives of physical medicine and rehabilitation, 95(2), 283-289. https://doi.org/10.1016/j.apmr.2013.09.002 PMID: 24035769
Thibaut A., Bruno M., Ledoux D., Demertzi A., & Laureys S. (2014). tDCS in patients with disorders of consciousness: sham-controlled randomized double-blind study. Neurology, 82(13), 1112-1118. https://doi.org/10.1212/WNL.0000000000000260 PMID: 24574549
Zhang Y., & Song W. (2018). Transcranial direct current stimulation in disorders of consciousness: a review. International Journal of Neuroscience, 128(3), 255-261 https://doi.org/10.1080/00207454. 2017.1381094 PMID: 28918680
Bourdillon P., Hermann B., Sitt J., & Naccache L. (2019). Electromagnetic brain stimulation in patients with disorders of consciousness. Frontiers in neuroscience, 13, 223. https://doi.org/10.3389/fnins. 2019.00223 PMID: 30936822
Hermann B., Raimondo F., Hirsch L., Huang Y., Denis-Valente M., Pérez P., et al. (2020). Combined behavioral and electrophysiological evidence for a direct cortical effect of prefrontal tDCS on disorders of consciousness. Scientific reports, 10(1), 1-16 https://doi.org/10.1038/s41598-019-56847-4 PMID: 31913322
Schiff N., Giacino J., Kalmar K., Victor J., Baker K., Gerber M., et al. (2007). Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature, 448(7153), 600-603. https://doi. org/10.1038/nature06041 PMID: 17671503
Monti M., Schnakers C., Korb A., Bystritsky A., & Vespa P. (2016). Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: a first-in-man report. Brain Stimul, 9 (6), 940-941. https://doi.org/10.1016/j.brs.2016.07.008 PMID: 27567470
Jobst B., Hindriks R., Laufs H., Tagliazucchi E., Hahn G., Ponce-Alvarez A., et al. (2017). Increased stability and breakdown of brain effective connectivity during slow-wave sleep: mechanistic insights from whole-brain computational modelling. Scientific reports, 7(1), 1-16. https://doi.org/10.1038/s41598-016-0028-x PMID: 28127051
Oizumi M., Albantakis L., & Tononi G. (2014). From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLoS Comput Biol, 10(5), e1003588. https://doi.org/10. 1371/journal.pcbi.1003588 PMID: 24811198
Solovey G., Alonso L., Yanagawa T., Fujii N., Magnasco M., Cecchi G., & Proekt A. (2015). Loss of consciousness is associated with stabilization of cortical activity. Journal of Neuroscience, 35(30), 10866-10877. https://doi.org/10.1523/JNEUROSCI.4895-14.2015 PMID: 26224868
Murphy M., Bruno M., Riedner B., Boveroux P., Noirhomme Q., Landsness E., et al. (2011). Propofol anesthesia and sleep: a high-density EEG study. Sleep, 34(3), 283-291. https://doi.org/10.1093/sleep/ 34.3.283 PMID: 21358845
Tagliazucchi E., & Laufs H. (2014). Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron, 82(3), 695-708. https://doi.org/10. 1016/j.neuron.2014.03.020 PMID: 24811386
Boveroux P., Vanhaudenhuyse A., Bruno M., Noirhomme Q., Lauwick S., Luxen A., et al. (2010). Breakdown of within-and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology: The Journal of the American Society of Anesthesiologists, 113(5), 1038-1053. https://doi.org/10.1097/ALN.0b013e3181f697f5 PMID: 20885292
Nelson L., Guo T., Lu J., Saper C., Franks N., & Maze M. (2002). The sedative component of anesthesia is mediated by GABA A receptors in an endogenous sleep pathway. Nature neuroscience, 5(10), 979-984. https://doi.org/10.1038/nn913 PMID: 12195434
Tung A., Bergmann B., Herrera S., Cao D., & Mendelson W. (2004). Recovery from sleep deprivation occurs during propofol anesthesia. Anesthesiology: The Journal of the American Society of Anesthesiologists, 100(6), 1419-1426. https://doi.org/10.1097/00000542-200406000-00014 PMID: 15166561
Schiff N., Nauvel T., & Victor J. (2014). Large-scale brain dynamics in disorders of consciousness. Current opinion in neurobiology, 25, 7-14. https://doi.org/10.1016/j.conb.2013.10.007 PMID: 24709594
Campbell J., Huang Z., Zhang J., Wu X., Qin P., Northoff G., et al. (2020). Pharmacologically informed machine learning approach for identifying pathological states of unconsciousness via resting-state fMRI. NeuroImage, 206, 116316. https://doi.org/10.1016/j.neuroimage.2019.116316 PMID: 31672663
Hannawi Y., Lindquist M., Caffo B., Sair H., & Stevens R. (2015). Resting brain activity in disorders of consciousness: a systematic review and meta-analysis. Neurology, 84(12), 1272-1280. https://doi.org/ 10.1212/WNL.0000000000001404 PMID: 25713001
Magnin M., Rey M., Bastuji H., Guillemant P., Mauguière F., & Garcia-Larrea L. (2010). Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans. Proceedings of the National Academy of Sciences, 107(8), 3829-3833. https://doi.org/10.1073/pnas.0909710107 PMID: 20142493
Song C., & Tagliazucchi E. (2019). Linking the nature and functions of sleep: insights from multimodal imaging of the sleeping brain. Current Opinion in Physiology.
Berry R., Budhiraja R., Gottlieb D., Gozal D., Iber C., Kapur V., et al. (2012). Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Journal of clinical sleep medicine, 8(05), 597-619.
Fernández-Espejo D., Soddu A., Cruse D., Palacios E. M., Junque C., Vanhaudenhuyse A., et al. (2012). A role for the default mode network in the bases of disorders of consciousness. Annals of neurology, 72(3), 335-343. https://doi.org/10.1002/ana.23635 PMID: 23034909
Bodart O., Amico E., Gómez F., Casali A., Wannez S., Heine L., et al. (2018). Global structural integrity and effective connectivity in patients with disorders of consciousness. Brain stimulation, 11(2), 358-365. https://doi.org/10.1016/j.brs.2017.11.006 PMID: 29162503
Vincent J., Patel G., Fox M., Snyder A., Baker J., Van Essen D., et al. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447(7140), 83-86. https://doi.org/10.1038/ nature05758 PMID: 17476267
Tagliazucchi E., von Wegner F., Morzelewski A., Brodbeck V., Jahnke K., & Laufs H. (2013). Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep. Proceedings of the National Academy of Sciences, 110(38), 15419-15424. https://doi.org/10.1073/ pnas.1312848110 PMID: 24003146
Barttfeld P., Uhrig L., Sitt J., Sigman M., Jarraya B., & Dehaene S. (2015). Signature of consciousness in the dynamics of resting-state brain activity. Proceedings of the National Academy of Sciences, 112 (3), 887-892.
Tagliazucchi E., Crossley N., Bullmore E., & Laufs H. (2016b). Deep sleep divides the cortex into opposite modes of anatomical-functional coupling. Brain Structure and Function, 221(8), 4221-4234.
Gosseries O., Charland-Verville V., Thonnard M., Bodart O., Laureys S., & Demertzi A. (2014). Amantadine, apomorphine and zolpidem in the treatment of disorders of consciousness. Current pharmaceutical design, 20(26), 4167-4184. PMID: 24025057
Deco G., Cruzat J., Cabral J., Knudsen G., Carhart-Harris R., Whybrow, P., et al. (2018). Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD. Current biology, 28(19), 3065-3074. https://doi.org/10.1016/j.cub.2018.07.083 PMID: 30270185
Kringelbach M., Cruzat J., Cabral J., Knudsen G., Carhart-Harris R., Whybrow P.,... et al. (2020). Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proceedings of the National Academy of Sciences, 117(17), 9566-9576 https://doi.org/10.1073/pnas.1921475117 PMID: 32284420
Raichle M. (2015). The brain's default mode network. Annual review of neuroscience, 38, 433-447. https://doi.org/10.1146/annurev-neuro-071013-014030 PMID: 25938726
Horovitz S., Braun A., Carr W., Picchioni D., Balkin T. J., Fukunaga M., & Duyn J. (2009). Decoupling of the brain's default mode network during deep sleep. Proceedings of the National Academy of Sciences, 106(27), 11376-11381. https://doi.org/10.1073/pnas.0901435106 PMID: 19549821
Crone J., Ladurner G., Höller Y., Golaszewski S., Trinka E., & Kronbichler M. (2011). Deactivation of the default mode network as a marker of impaired consciousness: an fMRI study. PloS one, 6(10).
Tagliazucchi E., von Wegner F., Morzelewski A., Borisov S., Jahnke K., & Laufs H. (2012). Automatic sleep staging using fMRI functional connectivity data. Neuroimage, 63(1), 63-72. https://doi.org/10. 1016/j.neuroimage.2012.06.036 PMID: 22743197
MacLaren R., Plamondon J. M., Ramsay K., Rocker G., Patrick W., & Hall R. (2000). A prospective evaluation of empiric versus protocol-based sedation and analgesia. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 20(6), 662-672. https://doi.org/10.1592/phco.20.7.662. 35172 PMID: 10853622
Laureys S., Celesia G., Cohadon F., Lavrijsen J., León-Carrión J., Sannita W., et al. (2010). Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC medicine, 8(1), 68. https://doi.org/10.1186/1741-7015-8-68 PMID: 21040571
Giacino J. The minimally conscious state: Defining the borders of consciousness. Prog. Brain Res. 150, 381-395 (2005). https://doi.org/10.1016/S0079-6123(05)50027-X PMID: 16186037
Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., et al. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1):273-289. https://doi.org/10.1006/nimg.2001. 0978 PMID: 11771995
Behrens T., Berg H., Jbabdi S., Rushworth M., Woolrich M. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34, 144-155. https://doi.org/10.1016/j. neuroimage.2006.09.018 PMID: 17070705
Breiman L. (2001). Random forests. Machine learning, 45(1), 5-32.
Abraham A., Pedregosa F., Eickenberg M., Gervais P., Mueller A., Kossaifi J.,... & Varoquaux G. (2014). Machine learning for neuroimaging with scikit-learn. Frontiers in neuroinformatics, 8, 14. https:// doi.org/10.3389/fninf.2014.00014 PMID: 24600388
Achard S., Salvador R., Whitcher B., Suckling J., Bullmore E. (2006). A resilient, low-frequency, smallworld human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63-72. https://doi.org/10.1523/JNEUROSCI.3874-05.2006 PMID: 16399673
Biswal B., Zerrin Yetkin F., Haughton V. M., Hyde J. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic resonance in medicine, 34(4), 537-541. https://doi.org/10.1002/mrm.1910340409 PMID: 8524021
Buckner R., Sepulcre J., Talukdar T., Krienen F., Liu H., Hedden T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. Journal of neuroscience, 29(6), 1860-1873. https://doi.org/10.1523/JNEUROSCI.5062-08.2009 PMID: 19211893
Glerean E., Salmi J., Lahnakoski J., Jääskeläinen I., Sams M. (2012). Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity. Brain connectivity, 2 (2), 91-101. https://doi.org/10.1089/brain.2011.0068 PMID: 22559794
Wang Z., Bovik A., Sheikh H., & Simoncelli E. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600-612. https://doi.org/10.1109/ tip.2003.819861 PMID: 15376593