Alterations in SLC4A2, SLC26A7 and SLC26A9 DriveAcid–Base Imbalance in Gastric Neuroendocrine Tumors and Uncover a Novel Mechanism for a Co-Occurring Polyautoimmune Scenario
Calvete, Oriol; Reyes, José; VALDES SOCIN, Hernan Gonzaloet al.
[en] bstract:Autoimmune polyendocrine syndrome (APS) is assumed to involve an immune systemmalfunction and entails several autoimmune diseases co-occurring in different tissues of the samepatient; however, they are orphans of its accurate diagnosis, as its genetic basis and pathogenicmechanism are not understood. Our previous studies uncovered alterations in the ATPase H+/K+Transporting Subunit Alpha (ATP4A) proton pump that triggered an internal cell acid–base imbal-ance, offering an autoimmune scenario for atrophic gastritis and gastric neuroendocrine tumors withsecondary autoimmune pathologies. Here, we propose the genetic exploration of APS involvinggastric disease to understand the underlying pathogenic mechanism of the polyautoimmune scenario.The whole exome sequencing (WES) study of five autoimmune thyrogastric families uncovered differ-ent pathogenic variants in SLC4A2, SLC26A7 and SLC26A9, which cotransport together with ATP4A.Exploratoryin vitrostudies suggested that the uncovered genes were involved in a pathogenicmechanism based on the alteration of the acid–base balance. Thus, we built a custom gene panelwith 12 genes based on the suggested mechanism to evaluate a new series of 69 APS patients. In total,64 filtered putatively damaging variants in the 12 genes of the panel were found in 54.17% of thestudied patients and none of the healthy controls. Our studies reveal a constellation of solute carriersthat co-express in the tissues affected with different autoimmune diseases, proposing a unique geneticorigin for co-occurring pathologies. These results settle a new-fangled genetics-based mechanismfor polyautoimmunity that explains not only gastric disease, but also thyrogastric pathology and disease co-occurrence in APS that are different from clinical incidental findings. This opens a newwindow leading to the prediction and diagnosis of co-occurring autoimmune diseases and clinicalmanagement of patients.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
Calvete, Oriol
Reyes, José; Spanish National Cancer Center > Human Genetics Group
VALDES SOCIN, Hernan Gonzalo ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service d'endocrinologie clinique
Martin, Paloma
Marazuela, Monica
Barroso, Alicia
Castells, Antoni
Torres-Ruiz, Raul
Rodriguez-Perales, Sandra
Curras-Freixes, Maria
Benitez, Javier; Spanish National Cancer research > Human Genetics Group
Language :
English
Title :
Alterations in SLC4A2, SLC26A7 and SLC26A9 DriveAcid–Base Imbalance in Gastric Neuroendocrine Tumors and Uncover a Novel Mechanism for a Co-Occurring Polyautoimmune Scenario
Publication date :
10 December 2021
Journal title :
Cells
eISSN :
2073-4409
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Switzerland
Frizinsky, S.; Haj-Yahia, S.; MacHnes Maayan, D.; Lifshitz, Y.; Maoz-Segal, R.; Offengenden, I.; Kidon, M.; Agmon-Levin, N. The innate immune perspective of autoimmune and autoinflammatory conditions. Rheumatology 2019, 58 (Suppl. 6), vi1–vi8. https://doi.org/10.1093/rheumatology/kez387.
Schmidt, R.E.; Grimbacher, B.; Witte, T. Autoimmunity and primary immunodeficiency: Two sides of the same coin? Nat. Rev. Rheumatol. 2018, 14, 7–18.
Betterle, C.; Dal Pra, C.; Mantero, F.; Zanchetta, R. Autoimmune adrenal insufficiency and autoimmune polyendocrine syn-dromes: Autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr. Rev. 2002, 23, 327– 364.
Husebye, E.S.; Anderson, M.S.; Kampe, O. Autoimmune polyendocrine syndromes. N. Engl. J. Med. 2018, 378, 1132–1141.
Cutolo, M. Autoimmune polyendocrine syndromes. Autoimmun. Rev. 2014, 13, 85–89.
Manthiram, K.; Zhou, Q.; Manthiram, K.; Zhou, Q.; Aksentijevich, I.; Kastner, D.L. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat. Immunol. 2017, 18, 832–842. https://doi.org/10. 1038/ni. 377.
Anderson, M.S.; Su, M.A. AIRE expands: New roles in immune tolerance and beyond. Nat. Rev. Immunol. 2016, 16, 247–258.
Vaidya, B.; Imrie, H.; Geatch, D.R.; Perros, P.; Ball, S.G.; Baylis, P.H.; Carr, D.; Hurel, S.J.; James, R.A.; Kelly, W.F.; et al. Associ-ation analysis of the cytotoxic T lymphocyte antigen-4 (CTLA-4) and autoimmune regulator-1 (AIRE-1) genes in sporadic autoimmune Addison’s disease. J. Clin. Endocrinol. Metab. 2000, 85, 688–691. https://doi.org/10.1210/jc.85.2.688.
Fischer, A.; Provot, J.; Jais, J.P.; Alcais, A.; Mahlaoui, N.; Adoue, D.; Aladjidi, N.; Amoura, Z.; Arlet, P.; Armari-Alla, C.; et al. Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J. Allergy Clin. Immunol. 2017, 140, 1388–1393. https://doi.org/10.1016/j.jaci.2016.12.978.
Massironi, S.; Zilli, A.; Elvevi, A.; Invernizzi, P. The changing face of chronic autoimmune atrophic gastritis: An updated com-prehensive perspective. Autoimmun. Rev. 2019, 18, 215–222. https://doi.org/10.1016/j.autrev.2018.08.011.
Calvete, O.; Reyes, J.; Zuñiga, S.; Paumard-Hernández, B.; Fernández, V.; Bujanda, L.; Rodriguez-Pinilla, M.S.; Palacios, J.; Heine-Suñer, D.; Banka, S.; et al. Exome sequencing identifies ATP4A gene as responsible of an atypical familial type I gastric-neuroendocrine tumour. Hum. Mol. Genet. 2015, 24, 2914–2922. https://doi.org/10.1093/hmg/ddv054.
Calvete, O.; Herraiz, M.; Reyes, J.; Patiño, A.; Benitez, J. A cumulative effect involving malfunction of the PTH1R and ATP4A genes explains a familial gastric neuroendocrine tumor with hypothyroidism and arthritis. Gastric Cancer 2017, 21, 12179–1003. https://doi.org/10.1007/s10120-017-0723-8.
Calvete, O.; Varro, A.; Pritchard, D.M.; Barroso, A.; Oteo, M.; Morcillo, M.Á.; Vargiu, P.; Dodd, S.; Garcia, M.; Reyes, J.; et al. A knockin mouse model for human ATP4aR703C mutation identified in familial gastric neuroendocrine tumors recapitulates the premalignant condition of the human disease and suggests new therapeutic strategies. Dis. Model. Mech. 2016, 9, 975–984. https://doi.org/10.1242/dmm.025890.
Benítez, J.; Marra, R.; Reyes, J.; Calvete, O. A genetic origin for acid–base imbalance triggers the mitochondrial damage that explains the autoimmune response and drives to gastric neuroendocrine tumours. Gastric Cancer 2019, 23, 52–63. https://doi.org/10.1007/s10120-019-00982-4.
Calvete, O.; Reyes, J.; Benítez, J. Case Report: CMV Infection and Same Mechanism-Originated Intestinal Inflammation Com-patible With Bowel/Crohn’s Disease Is Suggested in ATP4A Mutated-Driven Gastric Neuroendocrine Tumors. Front. Med. 2021, 8, 553110. https://doi.org/10.3389/fmed.2021.553110.
Cellini, M.; Santaguida, M.G.; Virili, C.; Capriello, S.; Brusca, N.; Gargano, L.; Centanni, M. Hashimoto’s thyroiditis and autoimmune gastritis. Front. Front. Endocrinol. 2017, 8, 92.
Xu, J.; Song, P.; Nakamura, S.; Miller, M.; Barone, S.; Alper, S.L.; Riederer, B.; Bonhagen, J.; Arend, L.J.; Amlal, H.; et al. Deletion of the chloride transporter Slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J. Biol. Chem. 2009, 284, 29470–29479. https://doi.org/10.1074/jbc.m109.044396.
Xu, J.; Song, P.; Miller, M.L.; Borgese, F.; Barone, S.; Riederer, B.; Wang, Z.; Alper, S.L.; Forte, J.G.; Shull, G.E.; et al. Deletion of the chloride transporter Slc26a9 causes loss of tubulovesicles in parietal cells and impairs acid secretion in the stomach. Proc. Natl. Acad. Sci. USA 2008, 105, 17955–17960. https://doi.org/10.1073/pnas.0800616105.
Fickert, P.; Trauner, M. When lightning strikes twice: The plot thickens for a dual role of the anion exchanger 2 (AE2/SLC4A2) in the pathogenesis and treatment of primary biliary cirrhosis. J. Hepatol. 2008, 50, 633–5. https://doi.org/10.1016/j.jhep.2008.12.006.
Neufeld, M.; Maclaren, N.; Blizzard, R. Autoimmune polyglandular syndromes. Pediatr. Ann. 1980, 9, 43–53. https://doi.org/10.3928/0090-4481-19800401-07.
Seidler, U.; Nikolovska, K. Slc26 family of anion transporters in the gastrointestinal tract: Expression, function, regulation, and role in disease. Compr. Physiol. 2019, 9, 839–872. https://doi.org/10.1002/cphy.c180027.
Antonelli, A.; Ferrari, S.M.; Corrado, A.; Di Domenicantonio, A.; Fallahi, P. Autoimmune thyroid disorders. Autoimmun. Rev. 2015, 14, 174–180.
Zou, M.; Alzahrani, A.S.; Al-Odaib, A.; Alqahtani, M.A.; Babiker, O.; Al-Rijjal, R.A.; Binessa, H.A.; Kattan, W.E.; Al-Enezi, A.F.; Al Qarni, A.; et al. Molecular Analysis of Congenital Hypothyroidism in Saudi Arabia: SLC26A7 Mutation Is a Novel Defect in Thyroid Dyshormonogenesis. J. Clin. Endocrinol. Metab. 2018, 103, 1889–1898. https://doi.org/10.1210/jc.2017-02202.
Ravi, N.; Yang, M.; Mylona, N.; Wennerberg, J.; Paulsson, K. Global RNA expression and DNA methylation patterns in primary anaplastic thyroid cancer. Cancers 2020, 12, 680. https://doi.org/10.3390/cancers12030680.
Valdes Socin, H.; Lutteri, L.; Cavalier, E.; Polus, M.; Geenen, V.; Louis, E.; Beckers, A. The thyrogastric syndrome: Its effects on micronutriments and gastric tumorigenesis | Le syndrome auto-immun thyro-gastrique: Ses effets sur les micronutriments et la tumorigenèse gastrique. Rev. Med. De Liege 2013, 68, 579–584.
De Block, C.E.M.; De Leeuw, I.H.; Van Gaal, L.F. Autoimmune gastritis in type 1 diabetes: A clinically oriented review. J. Clin. Endocrinol. Metab. 2008, 93, 363–371. https://doi.org/10.1210/jc.2007-2134.
Amerio, P.; Tracanna, M.; De Remigis, P.; Betterle, C.; Vianale, L.; Marra, M.E.; Di Rollo, D.; Capizzi, R.; Feliciani, C.; Tulli, A. Vitiligo associated with other autoimmune diseases: Polyglandular autoimmune syndrome types 3B + C and 4. Clin. Exp. Der-matol. 2006, 31, 746–749. https://doi.org/10.1111/j.1365-2230.2006.02171.x.
Zelissen, P.M.J.; Bast, E.J.E.G.; Croughs, R.J.M. Associated autoimmunity in addison’s disease. J. Autoimmun. 1995, 8, 121–130. https://doi.org/10.1006/jaut.1995.0009.
Chang, K.H.; Lyu, R.K.; Ro, L.S.; Wu, Y.R.; Chen, C.M. Coexistence of pernicious anemia and myasthenia gravis-A rare combi-nation of autoimmune diseases in Taiwan. J. Formos. Med Assoc. 2006, 105, 946–949. https://doi.org/10.1016/s0929-6646(09)60181-9.
Spritz, R.A.; Andersen, G.H.L. Genetics of Vitiligo. Dermatol. Clin. 2017, 35, 245–255. https://doi.org/10.1016/j.det.2016.11.013. 36. Biesecker, L.G. Genomic screening for monogenic forms of diabetes. BMC Med. 2018, 16, 1–3. https://doi.org/10.1186/s12916-018-1012-z.
Batterham, R.L.; Cummings, D.E. Mechanisms of diabetes improvement following bariatric/metabolic surgery. Diabetes Care 2016, 39, 893–901. https://doi.org/10.2337/dc16-0145..