Goyer C, Beaulieu C. Host range of streptomycete strains causing common scab. Plant Dis 1997;81:901–904.
Loria R, Bukhalid RA, Fry BA, King RR. Plant pathogenicity in the genus streptomyces. Plant Dis 1997;81:836–846.
Wanner LA, Kirk WW. Streptomyces – from basic microbiology to role as a plant pathogen. Am J Potato Res 2015;92:236–242
King RR, Lawrence CH, Clark MC. Correlation of phytotoxin production with pathogenicity ofStreptomyces scabies isolates from scab infected potato tubers. American Potato Journal 1991;68:675–680
Healy FG, Wach M, Krasnoff SB, Gibson DM, Loria R. The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. Mol Microbiol 2000;38:794–804.
King RR, Calhoun LA. The thaxtomin phytotoxins: Sources, synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry 2009;70:833–841
Loria R, Bignell DRD, Moll S, Huguet-Tapia JC, Joshi MV, et al. Thax-tomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie Van Leeuwenhoek 2008;94:3–10.
Bischoff V, Cookson SJ, Wu S, Scheible W-R. Thaxtomin a affects cesa-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in arabidopsis thal-iana seedlings. J Exp Bot 2009;60:955–965.
Duval I, Beaudoin N. Transcriptional profiling in response to inhibition of cellulose synthesis by thaxtomin a and isoxaben in arabi-dopsis thaliana suspension cells. Plant Cell Rep 2009;28:811–830.
Tateno M, Brabham C, DeBolt S. Cellulose biosynthesis inhibitors – a multifunctional toolbox. EXBOTJ 2016;67:533–542.
Li Y, Liu J, Díaz-Cruz G, Cheng Z, Bignell DRD. Virulence mecha-nisms of plant-pathogenic Streptomyces species: an updated review. Microbiology (Reading) 2019;165:1025–1040.
Khatri BB, Tegg RS, Brown PH, Wilson CR. Temporal association of potato tuber development with susceptibility to common scab and Streptomyces scabiei-induced responses in the potato periderm. Plant Pathol 2011;60:776–786
Natsume M, Tashiro N, Doi A, Nishi Y, Kawaide H. Effects of concanamycins produced by Streptomyces scabies on lesion type of common scab of potato. J Gen Plant Pathol 2017;83:78–82
Gimenez-Ibanez S, Chini A, Solano R. How microbes twist jasmonate signaling around their little fingers. Plants (Basel) 2016;5:323–329.
Fyans JK, Altowairish MS, Li Y, Bignell DRD. Characterization of the coronatine-like phytotoxins produced by the common scab pathogen Streptomyces scabies. Mol Plant Microbe Interact 2015;28:443–454.
Bignell DRD, Cheng Z, Bown L. The coronafacoyl phytotoxins: structure, biosynthesis, regulation and biological activities. Antonie Van Leeuwenhoek 2018;111:649–666.
Planckaert S, Deflandre B, de Vries A-M, Ameye M, Martins JC, et al. Identification of novel rotihibin analogues in Streptomyces scabies, including discovery of its biosynthetic gene cluster. Microbiol Spectr 2021;9:e0057121.
Arias AA, Lambert S, Martinet L, Adam D, Tenconi E, et al. Growth of desferrioxamine-deficient Streptomyces mutants through xeno-siderophore piracy of airborne fungal contaminations. FEMS Microbiology Ecology 2015;91:fiv080
Kodani S, Bicz J, Song L, Deeth RJ, Ohnishi-Kameyama M, et al. Structure and biosynthesis of scabichelin, a novel tris-hydroxamate siderophore produced by the plant pathogen Streptomyces scabies 87.22. Org Biomol Chem 2013;11:4686–4694.
Seipke RF, Song L, Bicz J, Laskaris P, Yaxley AM, et al. The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR-and AfsR-family proteins. Microbiology (Reading) 2011;157:2681–2693.
Schlösser A, Jantos J, Hackmann K, Schrempf H. Characterization of the binding protein-dependent cellobiose and cellotriose trans-port system of the cellulose degrader Streptomyces reticuli. Appl Environ Microbiol 1999;65:2636–2643.
Francis IM, Jourdan S, Fanara S, Loria R, Rigali S. The cellobiose sensor CebR is the gatekeeper of Streptomyces scabies patho-genicity. mBio 2015;6:e02018.
Jourdan S, Francis IM, Kim MJ, Salazar JJC, Planckaert S, et al. The CebE/MsiK transporter is a doorway to the cello-oligosaccharide-mediated induction of Streptomyces scabies pathogenicity. Sci Rep 2016;6:27144.
Joshi MV, Bignell DRD, Johnson EG, Sparks JP, Gibson DM, et al. The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies. Mol Microbiol 2007;66:633–642.
Johnson EG, Joshi MV, Gibson DM, Loria R. Cello-oligosaccharides released from host plants induce pathogenicity in scab-causing Streptomyces species. Physiological and Molecular Plant Pathology 2007;71:18–25
Book AJ, Lewin GR, McDonald BR, Takasuka TE, Wendt-Pienkowski E, et al. Evolution of high cellulolytic activity in symbiotic streptomyces through selection of expanded gene content and coordinated gene expression. PLoS Biol 2016;14:1–21.
Jourdan S, Francis IM, Deflandre B, Loria R, Rigali S. Tracking the Subtle Mutations Driving Host Sensing by the Plant Pathogen. Streptomyces scabies 2020;2:1.
Jourdan S, Francis IM, Deflandre B, Tenconi E, Riley J, et al. Contri-bution of the β-glucosidase BglC to the onset of the pathogenic lifestyle of Streptomyces scabies. Mol Plant Pathol 2018;19:1480–1490.
Liu J, Nothias L-F, Dorrestein PC, Tahlan K, Bignell DRD. Genomic and Metabolomic Analysis of the Potato Common Scab Pathogen. Streptomyces scabiei ACS Omega 2021;6:11474–11487.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357–359.
Langmead B, Wilks C, Antonescu V, Charles R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 2019;35:421–432.
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30:923–930.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:1–21.
Adams KJ, Pratt B, Bose N, Dubois LG, St John-Williams L, et al. Skyline for small molecules: a unifying software package for quan-titative metabolomics. J Proteome Res 2020;19:1447–1458.
Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019;47:W81–W87.
Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res 2020;48:D454–D458.
Vicente CM, Thibessard A, Lorenzi J-N, Benhadj M, Hôtel L, et al. Comparative genomics among closely related Streptomyces strains revealed specialized metabolite biosynthetic gene cluster diversity. Antibiotics (Basel) 2018;7:1–11.
Omura S, Shimizu H, Iwai Y, Hinotozawa K, Otoguro K, et al. AM-2604 A, a new antiviral antibiotic produced by a strain of Strepto-myces. J Antibiot 1982;35:1632–1637.
Dröse S, Altendorf K. Bafilomycins and concanamycins as inhibi-tors of V-ATPases and P-ATPases. J Exp Biol 1997;200:1–8.
Dröse S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, et al. Inhibitory effect of modified bafilomycins and concanamycins on P-and V-type adenosinetriphosphatases. Biochemistry 1993;32:3902–3906.
Hoskisson PA, Seipke RF. Cryptic or silent? the known unknowns, unknown knowns, and unknown unknowns of secondary metabo-lism. mBio 2020;11:1–5.
Deflandre B, Thiébaut N, Planckaert S, Jourdan S, Anderssen S, et al. Deletion of bglC triggers a genetic compensation response by awakening the expression of alternative beta-glucosidase. Biochim Biophys Acta Gene Regul Mech 2020;1863:194615.
Bignell DRD, Seipke RF, Huguet-Tapia JC, Chambers AH, Parry RJ, et al. Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. Mol Plant Microbe Interact 2010;23:161–175.
Spohn M, Edenhart S, Alanjary M, Ziemert N, Wibberg D, et al. Identification of a novel aminopolycarboxylic acid siderophore gene cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine (EDHA). Metallomics 2018;10:722–734.
Lambert S, Traxler MF, Craig M, Maciejewska M, Ongena M, et al. Altered desferrioxamine-mediated iron utilization is a common trait of bald mutants of Streptomyces coelicolor. Metallomics 2014;6:1390–1399.
Yamanaka K, Oikawa H, Ogawa H-O, Hosono K, Shinmachi F, et al. Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology (Reading) 2005;151:2899–2905.
Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol Microbiol 2012;86:628–644.
Craig M, Lambert S, Jourdan S, Tenconi E, Colson S, et al. Unsus-pected control of siderophore production by N-acetylglucosamine in streptomycetes. Environ Microbiol Rep 2012;4:512–521.
Planckaert S, Jourdan S, Francis IM, Deflandre B, Rigali S, et al. Proteomic response to thaxtomin phytotoxin elicitor cellobiose and to deletion of cellulose utilization regulator CebR in Streptomyces scabies. J Proteome Res 2018;17:3837–3852.
Bignell DRD, Huguet-Tapia JC, Joshi MV, Pettis GS, Loria R. What does it take to be a plant pathogen: genomic insights from Strepto-myces species. Antonie van Leeuwenhoek 2010;98:179–194.
Świątek-Połatyńska MA, Bucca G, Laing E, Gubbens J, Titgemeyer F, et al. Genome-wide analysis of in vivo binding of the master regulator DasR in Streptomyces coelicolor identifies novel non-canonical targets. PLoS One 2015;10:1–24.
Komatsu M, Tsuda M, Omura S, Oikawa H, Ikeda H. Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proc Natl Acad Sci U S A 2008;105:7422–7427.
Seipke RF, Loria R. Hopanoids are not essential for growth of Streptomyces scabies 87-22. J Bacteriol 2009;191:5216–5223.
Jiang J, He X, Cane DE. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat Chem Biol 2007;3:711–715.
Bignell DRD, Fyans JK, Cheng Z. Phytotoxins produced by plant pathogenic Streptomyces species. J Appl Microbiol 2014;116:223–235.
Vior NM, Cea-Torrescassana E, Eyles TH, Chandra G, Truman AW. Regulation of bottromycin biosynthesis involves an internal transcriptional start site and a cluster-situated modulator. Front Microbiol 2020;11:1–16.
Beauséjour J, Beaulieu C. Characterization of Streptomyces scabies mutants deficient in melanin biosynthesis. Can J Microbiol 2004;50:705–709.
Bursy J, Kuhlmann AU, Pittelkow M, Hartmann H, Jebbar M, et al. Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol 2008;74:7286–7296.
Bown L, Li Y, Berrué F, Verhoeven JTP, Dufour SC, et al. Coro-nafacoyl phytotoxin biosynthesis and evolution in the common scab pathogen Streptomyces scabiei. Appl Environ Microbiol 2017;83:1–15.
Chemler JA, Buchholz TJ, Geders TW, Akey DL, Rath CM, et al. Biochemical and structural characterization of germicidin synthase: analysis of a type III polyketide synthase that employs acyl-ACP as a starter unit donor. J Am Chem Soc 2012;134:7359–7366.
Haydock SF, Appleyard AN, Mironenko T, Lester J, Scott N, et al. Organization of the biosynthetic gene cluster for the macrolide concanamycin A in Streptomyces neyagawaensis ATCC 27449. Microbiology (Reading) 2005;151:3161–3169.