[en] Single phases of the α, β, and γ polymorphs of the Fe2WO6 iron tungsten oxide were obtained through an aqueous solution route based on the combustion and heat treatment of a spray-dried precursor powder. Syntheses with Fe/W ratios ≠ 2 identified a domain of solid solutions consistent with a Fe2–2xW1+x□xO6 scenario (x up to ∼0.025) for the defect chemistry in the temperature range around 850 °C. The crystallographic characterizations revealed a random cationic distribution in an α-PbO2-type cell for the low-temperature polymorph (α) and pointed to a reconstructive mechanism for the formation of polymorph β. A comparison of diffuse reflectance spectra confirmed the visual observation of minor color differences between the polymorphs by revealing small shifts of the absorption threshold; the Kubelka–Munk function and Tauc plots were used for comparison of the polymorphs and discussion of the results with respect to relevant literature.
Disciplines :
Chemistry
Author, co-author :
Caubergh, Stéphane ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale
Matsubara, Nami
Damay, Françoise
Fauth, François
Khalyavin, Dmitry D.
Manuel, Pascal
Mahmoud, Abdelfattah ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Poelman, Dirk
Martin, Christine
Vertruyen, Bénédicte ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale
Language :
English
Title :
Cationic Ordering, Solid Solution Domain, and Diffuse Reflectance in Fe2WO6 Polymorphs
Publication date :
11 November 2021
Journal title :
Journal of Physical Chemistry. C, Nanomaterials and interfaces
Bayer, G. Isomorphie-und Morphotropiebeziehungen bei Oxyden mit TiO2-typ und Verwandten Strukturen. Ber. Dtsch. Keram. Ges. 1962, 39, 535-554
Parant, C.; Bernier, J. C.; Michel, A. Sur Deux Formes Orthorhombiques de Fe2WO6. C. R. Acad. Sc. Paris Serie C 1973, 276, 495-497
Senegas, J.; Galy, J. L'Oxyde Double Fe2WO6. I. Structure Cristalline et Filiation Structurale. J. Solid State Chem. 1974, 10, 5-11, 10.1016/0022-4596(74)90002-4
Weitzel, H. Magnetische Strukturen von NiNb2O6und Fe2WO6. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 592-597, 10.1107/s0567739476001265
Pinto, H.; Melamud, M.; Shaked, H. Magnetic Structure of Fe2WO6, a Neutron Diffraction Study. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1977, 33, 663-667, 10.1107/s0567739477001648
Birchall, T.; Hallett, C.; Vaillancourt, A.; Ruebenbauer, K. A Study of Iron-Tungsten Oxides and Iron-Chromium-Tungsten Oxides. Can. J. Chem. 1988, 66, 698-702, 10.1139/v88-121
Walczak, J.; Rychiowska-Himmel, I.; Tabero, P. Iron(III) Tungstate and Its Modifications. J. Mater. Sci. 1992, 27, 3680-3684, 10.1007/bf01151850
Guskos, N.; Sadlowski, L.; Typek, J.; Likodimos, V.; Gamari-Seale, H.; Bojanowski, B.; Wabia, M.; Walczak, J.; Rychlowska-Himmel, I. Magnetic and EPR Studies of α-, β-, and γ-Fe2WO6Phases at Low Temperatures. J. Solid State Chem. 1995, 120, 216-222, 10.1006/jssc.1995.1401
Guskos, N.; Likodimos, V.; Glenis, S.; Patapis, S. K.; Palilis, L. C.; Typek, J.; Wabia, M.; Rychlowska-Himmel, I. Electrical Transport and EPR Properties of the α, β, and γPhases of Fe2WO6. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 60, 7687-7690, 10.1103/physrevb.60.7687
Leiva, H.; Dwight, K.; Wold, A. Preparation and Characterization of Conducting Iron Tungstates. J. Solid State Chem. 1982, 42, 41-46, 10.1016/0022-4596(82)90415-7
Khader, M. M.; Saleh, M. M.; El-Naggar, E. M. Photoelectrochemical Characteristics of Ferric Tungstate. J. Solid State Electrochem. 1998, 2, 170-175, 10.1007/s100080050083
Meyer, R.; Sliozberg, K.; Khare, C.; Schuhmann, W.; Ludwig, A. High-Throughput Screening of Thin-Film Semiconductor Material Libraries II: Characterization of Fe-W-O Libraries. ChemSusChem 2015, 8, 1279-1285, 10.1002/cssc.201402918
Kollender, J. P.; Mardare, A. I.; Hassel, A. W. Localized Photoelectrochemistry on a Tungsten Oxide-Iron Oxide Thin Film Material Library. ACS Comb. Sci. 2013, 15, 601-608, 10.1021/co400051g
Abdi, F. F.; Chemseddine, A.; Berglund, S. P.; van de Krol, R. Assessing the Suitability of Iron Tungstate (Fe2WO6) as a Photoelectrode Material for Water Oxidation. J. Phys. Chem. C 2017, 121, 153-160, 10.1021/acs.jpcc.6b10695
Lin, H.; Long, X.; An, Y.; Yang, S. In situ Growth of Fe2WO6on WO3Nanosheets to Fabricate Heterojunction Arrays for Boosting Solar Water Splitting. J. Chem. Phys. 2020, 152, 214704, 10.1063/5.0008227
Rawal, S. B.; Ojha, D. P.; Sung, S. D.; Lee, W. I. Fe2WO6/TiO2, an Efficient Visible-Light Photocatalyst Driven by Hole-Transport Mechanism. Catal. Commun. 2014, 56, 55-59, 10.1016/j.catcom.2014.07.007
Wang, Y.; Zeng, Y.; Chen, X.; Wang, Q.; Wan, S.; Wang, D.; Cai, W.; Song, F.; Zhang, S.; Zhong, Q. Tailoring Shape and Phase Formation: Rational Synthesis of Single-Phase BiFeWOxNanooctahedra and Phase Separated Bi2WO6-Fe2WO6Microflower Heterojunctions and Visible Light Photocatalytic Performances. Chem. Eng. J. 2018, 351, 295-303, 10.1016/j.cej.2018.06.040
Xin, Y.; Zhang, N.; Li, Q.; Zhang, Z.; Cao, X.; Zheng, L.; Zeng, Y.; Anderson, J. A. Selective Catalytic Reduction of NOxwith NH3over Short-Range Ordered W-O-Fe Structures with High Thermal Stability. Appl. Catal., B 2018, 229, 81-87, 10.1016/j.apcatb.2018.02.012
Kendrick, E.; Świątek, A.; Barker, J. Synthesis and Characterisation of Iron Tungstate Anode Materials. J. Power Sources 2009, 189, 611-615, 10.1016/j.jpowsour.2008.09.103
Xu, K.; Shen, X.; Ji, Z.; Yuan, A.; Kong, L.; Zhu, G.; Zhu, J. Highly Monodispersed Fe2WO6Micro-Octahedrons with Hierarchical Porous Structure and Oxygen Vacancies for Lithium Storage. Chem. Eng. J. 2021, 413, 127504, 10.1016/j.cej.2020.127504
Espinosa-Angeles, J. C.; Goubard-Bretesché, N.; Quarez, E.; Payen, C.; Sougrati, M.-T.; Crosnier, O.; Brousse, T. Investigating the Cycling Stability of Fe2WO6Pseudocapacitive Electrode Materials. Nanomaterials 2021, 11, 1405, 10.3390/nano11061405
Panja, S. N.; Kumar, J.; Harnagea, L.; Nigam, A. K.; Nair, S. γ-Fe2WO6-A Magnetodielectric with Disordered Magnetic and Electronic Ground States. J. Magn. Magn. Mater. 2018, 466, 354-358, 10.1016/j.jmmm.2018.07.046
Schuler, R.; Norby, T.; Fjellvåg, H. Defects and Polaronic Electron Transport in Fe2WO6. Phys. Chem. Chem. Phys. 2020, 22, 15541-15548, 10.1039/d0cp01588a
Schuler, R.; Bianchini, F.; Norby, T.; Fjellvåg, H. Near-Broken-Gap Alignment between FeWO4and Fe2WO6for Ohmic Direct p-n Junction Thermoelectrics. ACS Appl. Mater. Interfaces 2021, 13, 7416-7422, 10.1021/acsami.0c19341
Hassanpour, M.; Hosseini Tafreshi, S. A.; Amiri, O.; Hamadanian, M.; Salavati-Niasari, M. Toxic Effects of Fe2WO6Nanoparticles towards Microalga Dunaliella salina: Sonochemical Synthesis Nanoparticles and Investigate its Impact on the Growth. Chemosphere 2020, 258, 127348, 10.1016/j.chemosphere.2020.127348
Nandiyanto, A. B. D.; Okuyama, K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv. Powder Technol. 2011, 22, 1-19, 10.1016/j.apt.2010.09.011
Stunda-Zujeva, A.; Irbe, Z.; Berzina-Cimdina, L. Controlling the morphology of ceramic and composite powders obtained via spray drying-A review. Ceram. Int. 2017, 43, 11543-11551, 10.1016/j.ceramint.2017.05.023
Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the BET Equation Applicable to Microporous Adsorbents?. Stud. Surf. Sci. Catal. 2007, 160, 49-56, 10.1016/s0167-2991(07)80008-5
Fauth, F.; Boer, R.; Gil-Ortiz, F.; Popescu, C.; Vallcorba, O.; Peral, I.; Fullà, D.; Benach, J.; Juanhuix, J. The Crystallography Stations at the Alba Synchrotron. Eur. Phys. J. Plus 2015, 130, 160, 10.1140/epjp/i2015-15160-y
Chapon, L. C.; Manuel, P.; Radaelli, P. G.; Benson, C.; Perrott, L.; Ansell, S.; Rhodes, N. J.; Raspino, D.; Duxbury, D.; Spill, E. et al. Wish: The New Powder and Single Crystal Magnetic Diffractometer on the Second Target Station. Neutron News 2011, 22, 22-25, 10.1080/10448632.2011.569650
Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B Condens. Matter 1993, 192, 55-69, 10.1016/0921-4526(93)90108-i
Zupan, K.; Marinšek, M.; Pejovnik, S.; Maček, J.; Zore, K. Combustion Synthesis and the Influence of Precursor Packing on the Sintering Properties of LCC Nanopowders. J. Eur. Ceram. Soc. 2004, 24, 1935-1939, 10.1016/s0955-2219(03)00546-6
Waburg, M.; Müller-Buschbaum, H. ZnTa2O6Ein Neuer Vertreter des tri-α-PbO2-Typs (mit Ergänzenden Daten über ZnNb2O6). Z. Anorg. Allg. Chem. 1984, 508, 55-60, 10.1002/zaac.19845080109
Bernier, J. C.; Poix, P. Structural Study of Two Trirutile Oxide Containing Vanadium. Ann. Chem. 1968, 14, 119
Caubergh, S.; Matsubara, N.; Damay, F.; Maignan, A.; Fauth, F.; Manuel, P.; Khalyavin, D. D.; Vertruyen, B.; Martin, C. Original Network of Zigzag Chains in the β Polymorph of Fe2WO6: Crystal Structure and Magnetic Ordering. Inorg. Chem. 2020, 59, 9798-9806, 10.1021/acs.inorgchem.0c01024
Thomas, G.; Ropital, F. Influence des Gaz sur la Synthèse du Tungstate de Fer Fe2WO6-1. Etude Expérimentale. Mater. Chem. Phys. 1984, 11, 549-562, 10.1016/0254-0584(84)90054-3
Leiva, H.; Kershaw, R.; Dwight, K.; Wold, A. Preparation and Properties of the Systems Fe2-xCrxWO6, Fe2-xRhxWO6, and Cr2-xRhxWO6. J. Solid State Chem. 1983, 47, 293-300, 10.1016/0022-4596(83)90021-x
Müller, U. Symmetry Relationships between Crystal Structures; Oxford University Press: Oxford, 2013; p 199.
Sherman, D. M.; Waite, T. D. Electronic Spectra of Fe3+Oxides and Oxide Hydroxides in the Near IR to Near UV. Am. Mineral. 1985, 70, 1262-1269
Morris, R. V.; Lauer, H. V.; Lawson, C. A.; Gibson, E. K.; Nace, G. A.; Stewart, C. Spectral and Other Physicochemical Properties of Submicron Powders of Hematite (α-Fe2O3), Maghemite (γ-Fe2O3), Magnetite (Fe3O4), Goethite (α-FeOOH), and Lepidocrocite (γ-FeOOH). J. Geophys. Res. 1985, 90, 3126-3144, 10.1029/jb090ib04p03126
Marusak, L. A.; Messier, R.; White, W. B. Optical Absorption Spectrum of Hematite, αFe2O3near IR to UV. J. Phys. Chem. Solids 1980, 41, 981-984, 10.1016/0022-3697(80)90105-5
Galuza, A. I.; Beznosov, A. B.; Eremenko, V. V. Optical Absorption Edge in α-Fe2O3: The Exciton-Magnon Structure. Low Temp. Phys. 1998, 24, 726-729, 10.1063/1.593675
Chernyshova, I. V.; Ponnurangam, S.; Somasundaran, P. On the Origin of an Unusual Dependence of (Bio)chemical Reactivity of Ferric Hydroxides on Nanoparticle Size. Phys. Chem. Chem. Phys. 2010, 12, 14045-14056, 10.1039/c0cp00168f
Dondi, M.; Matteucci, F.; Cruciani, G.; Gasparotto, G.; Tobaldi, D. M. Pseudobrookite Ceramic Pigments: Crystal Structural, Optical and Technological Properties. Solid State Sci. 2007, 9, 362-369, 10.1016/j.solidstatesciences.2007.03.001
Grave, D. A.; Yatom, N.; Ellis, D. S.; Toroker, M. C.; Rothschild, A. The "Rust" Challenge: On the Correlations between Electronic Structure, Excited State Dynamics, and Photoelectrochemical Performance of Hematite Photoanodes for Solar Water Splitting. Adv. Mater. 2018, 30, 1706577, 10.1002/adma.201706577
Liao, P.; Carter, E. A. Optical Excitations in Hematite (α-Fe2O3) via Embedded Cluster Models: A CASPT2 Study. J. Phys. Chem. C 2011, 115, 20795-20805, 10.1021/jp206991v
Piccinin, S. The Band Structure and Optical Absorption of Hematite (α-Fe2O3): a First-Principles GW-BSE Study. Phys. Chem. Chem. Phys. 2019, 21, 2957-2967, 10.1039/c8cp07132b
Meng, Y.; Liu, X.-W.; Huo, C.-F.; Guo, W.-P.; Cao, D.-B.; Peng, Q.; Dearden, A.; Gonze, X.; Yang, Y.; Wang, J. et al. When Density Functional Approximations Meet Iron Oxides. J. Chem. Theory Comput. 2016, 12, 5132-5144, 10.1021/acs.jctc.6b00640
Liao, P.; Carter, E. A. Testing Variations of the GW Approximation on Strongly Correlated Transition Metal Oxides: Hematite (α-Fe2O3) as a Benchmark. Phys. Chem. Chem. Phys. 2011, 13, 15189-15199, 10.1039/c1cp20829b
Snir, N.; Toroker, M. C. The Operando Optical Spectrum of Hematite during Water Splitting through a GW-BSE Calculation. J. Chem. Theory Comput. 2020, 16, 4857-4864, 10.1021/acs.jctc.9b00595
Gesesse, G. D.; Gomis-Berenguer, A.; Barthe, M.-F.; Ania, C. O. On the Analysis of Diffuse Reflectance Measurements to Estimate the Optical Properties of Amorphous Porous Carbons and Semiconductor/Carbon Catalysts. J. Photochem. Photobiol., A 2020, 398, 112622, 10.1016/j.jphotochem.2020.112622
Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi 1966, 15, 627-637, 10.1002/pssb.19660150224
Botella, P.; López-Moreno, S.; Errandonea, D.; Manjón, F. J.; Sans, J. A.; Vie, D.; Vomiero, A. High-Pressure Characterization of Multifunctional CrVO4. J. Phys.: Condens. Matter 2020, 32, 385403, 10.1088/1361-648x/ab9408
Rajeshwar, K.; Hossain, M. K.; Macaluso, R. T.; Janáky, C.; Varga, A.; Kulesza, P. J. Review-Copper Oxide-Based Ternary and Quaternary Oxides: Where Solid-State Chemistry Meets Photoelectrochemistry. J. Electrochem. Soc. 2018, 165, H3192-H3206, 10.1149/2.0271804jes
Roy, D.; Samu, G. F.; Hossain, M. K.; Janáky, C.; Rajeshwar, K. On the Measured Optical Bandgap Values of Inorganic Oxide Semiconductors for Solar Fuels Generation. Catal. Today 2018, 300, 136-144, 10.1016/j.cattod.2017.03.016
Botella, P.; Errandonea, D.; Garg, A. B.; Rodriguez-Hernandez, P.; Muñoz, A.; Achary, S. N.; Vomiero, A. High-Pressure Characterization of the Optical and Electronic Properties of InVO4, InNbO4, and InTaO4. SN Appl. Sci. 2019, 1, 389, 10.1007/s42452-019-0406-7