[en] Single phases of the α, β, and γ polymorphs of the Fe2WO6 iron tungsten oxide were obtained through an aqueous solution route based on the combustion and heat treatment of a spray-dried precursor powder. Syntheses with Fe/W ratios ≠ 2 identified a domain of solid solutions consistent with a Fe2–2xW1+x□xO6 scenario (x up to ∼0.025) for the defect chemistry in the temperature range around 850 °C. The crystallographic characterizations revealed a random cationic distribution in an α-PbO2-type cell for the low-temperature polymorph (α) and pointed to a reconstructive mechanism for the formation of polymorph β. A comparison of diffuse reflectance spectra confirmed the visual observation of minor color differences between the polymorphs by revealing small shifts of the absorption threshold; the Kubelka–Munk function and Tauc plots were used for comparison of the polymorphs and discussion of the results with respect to relevant literature.
Disciplines :
Chemistry
Author, co-author :
Caubergh, Stéphane ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale
Matsubara, Nami
Damay, Françoise
Fauth, François
Khalyavin, Dmitry D.
Manuel, Pascal
Mahmoud, Abdelfattah ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Poelman, Dirk
Martin, Christine
Vertruyen, Bénédicte ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale
Language :
English
Title :
Cationic Ordering, Solid Solution Domain, and Diffuse Reflectance in Fe2WO6 Polymorphs
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bayer, G. Isomorphie-und Morphotropiebeziehungen bei Oxyden mit TiO2-typ und Verwandten Strukturen. Ber. Dtsch. Keram. Ges. 1962, 39, 535-554
Parant, C.; Bernier, J. C.; Michel, A. Sur Deux Formes Orthorhombiques de Fe2WO6. C. R. Acad. Sc. Paris Serie C 1973, 276, 495-497
Senegas, J.; Galy, J. L'Oxyde Double Fe2WO6. I. Structure Cristalline et Filiation Structurale. J. Solid State Chem. 1974, 10, 5-11, 10.1016/0022-4596(74)90002-4
Weitzel, H. Magnetische Strukturen von NiNb2O6und Fe2WO6. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 592-597, 10.1107/s0567739476001265
Pinto, H.; Melamud, M.; Shaked, H. Magnetic Structure of Fe2WO6, a Neutron Diffraction Study. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1977, 33, 663-667, 10.1107/s0567739477001648
Birchall, T.; Hallett, C.; Vaillancourt, A.; Ruebenbauer, K. A Study of Iron-Tungsten Oxides and Iron-Chromium-Tungsten Oxides. Can. J. Chem. 1988, 66, 698-702, 10.1139/v88-121
Walczak, J.; Rychiowska-Himmel, I.; Tabero, P. Iron(III) Tungstate and Its Modifications. J. Mater. Sci. 1992, 27, 3680-3684, 10.1007/bf01151850
Guskos, N.; Sadlowski, L.; Typek, J.; Likodimos, V.; Gamari-Seale, H.; Bojanowski, B.; Wabia, M.; Walczak, J.; Rychlowska-Himmel, I. Magnetic and EPR Studies of α-, β-, and γ-Fe2WO6Phases at Low Temperatures. J. Solid State Chem. 1995, 120, 216-222, 10.1006/jssc.1995.1401
Guskos, N.; Likodimos, V.; Glenis, S.; Patapis, S. K.; Palilis, L. C.; Typek, J.; Wabia, M.; Rychlowska-Himmel, I. Electrical Transport and EPR Properties of the α, β, and γPhases of Fe2WO6. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 60, 7687-7690, 10.1103/physrevb.60.7687
Leiva, H.; Dwight, K.; Wold, A. Preparation and Characterization of Conducting Iron Tungstates. J. Solid State Chem. 1982, 42, 41-46, 10.1016/0022-4596(82)90415-7
Khader, M. M.; Saleh, M. M.; El-Naggar, E. M. Photoelectrochemical Characteristics of Ferric Tungstate. J. Solid State Electrochem. 1998, 2, 170-175, 10.1007/s100080050083
Meyer, R.; Sliozberg, K.; Khare, C.; Schuhmann, W.; Ludwig, A. High-Throughput Screening of Thin-Film Semiconductor Material Libraries II: Characterization of Fe-W-O Libraries. ChemSusChem 2015, 8, 1279-1285, 10.1002/cssc.201402918
Kollender, J. P.; Mardare, A. I.; Hassel, A. W. Localized Photoelectrochemistry on a Tungsten Oxide-Iron Oxide Thin Film Material Library. ACS Comb. Sci. 2013, 15, 601-608, 10.1021/co400051g
Abdi, F. F.; Chemseddine, A.; Berglund, S. P.; van de Krol, R. Assessing the Suitability of Iron Tungstate (Fe2WO6) as a Photoelectrode Material for Water Oxidation. J. Phys. Chem. C 2017, 121, 153-160, 10.1021/acs.jpcc.6b10695
Lin, H.; Long, X.; An, Y.; Yang, S. In situ Growth of Fe2WO6on WO3Nanosheets to Fabricate Heterojunction Arrays for Boosting Solar Water Splitting. J. Chem. Phys. 2020, 152, 214704, 10.1063/5.0008227
Rawal, S. B.; Ojha, D. P.; Sung, S. D.; Lee, W. I. Fe2WO6/TiO2, an Efficient Visible-Light Photocatalyst Driven by Hole-Transport Mechanism. Catal. Commun. 2014, 56, 55-59, 10.1016/j.catcom.2014.07.007
Wang, Y.; Zeng, Y.; Chen, X.; Wang, Q.; Wan, S.; Wang, D.; Cai, W.; Song, F.; Zhang, S.; Zhong, Q. Tailoring Shape and Phase Formation: Rational Synthesis of Single-Phase BiFeWOxNanooctahedra and Phase Separated Bi2WO6-Fe2WO6Microflower Heterojunctions and Visible Light Photocatalytic Performances. Chem. Eng. J. 2018, 351, 295-303, 10.1016/j.cej.2018.06.040
Xin, Y.; Zhang, N.; Li, Q.; Zhang, Z.; Cao, X.; Zheng, L.; Zeng, Y.; Anderson, J. A. Selective Catalytic Reduction of NOxwith NH3over Short-Range Ordered W-O-Fe Structures with High Thermal Stability. Appl. Catal., B 2018, 229, 81-87, 10.1016/j.apcatb.2018.02.012
Kendrick, E.; Świątek, A.; Barker, J. Synthesis and Characterisation of Iron Tungstate Anode Materials. J. Power Sources 2009, 189, 611-615, 10.1016/j.jpowsour.2008.09.103
Xu, K.; Shen, X.; Ji, Z.; Yuan, A.; Kong, L.; Zhu, G.; Zhu, J. Highly Monodispersed Fe2WO6Micro-Octahedrons with Hierarchical Porous Structure and Oxygen Vacancies for Lithium Storage. Chem. Eng. J. 2021, 413, 127504, 10.1016/j.cej.2020.127504
Espinosa-Angeles, J. C.; Goubard-Bretesché, N.; Quarez, E.; Payen, C.; Sougrati, M.-T.; Crosnier, O.; Brousse, T. Investigating the Cycling Stability of Fe2WO6Pseudocapacitive Electrode Materials. Nanomaterials 2021, 11, 1405, 10.3390/nano11061405
Panja, S. N.; Kumar, J.; Harnagea, L.; Nigam, A. K.; Nair, S. γ-Fe2WO6-A Magnetodielectric with Disordered Magnetic and Electronic Ground States. J. Magn. Magn. Mater. 2018, 466, 354-358, 10.1016/j.jmmm.2018.07.046
Schuler, R.; Norby, T.; Fjellvåg, H. Defects and Polaronic Electron Transport in Fe2WO6. Phys. Chem. Chem. Phys. 2020, 22, 15541-15548, 10.1039/d0cp01588a
Schuler, R.; Bianchini, F.; Norby, T.; Fjellvåg, H. Near-Broken-Gap Alignment between FeWO4and Fe2WO6for Ohmic Direct p-n Junction Thermoelectrics. ACS Appl. Mater. Interfaces 2021, 13, 7416-7422, 10.1021/acsami.0c19341
Hassanpour, M.; Hosseini Tafreshi, S. A.; Amiri, O.; Hamadanian, M.; Salavati-Niasari, M. Toxic Effects of Fe2WO6Nanoparticles towards Microalga Dunaliella salina: Sonochemical Synthesis Nanoparticles and Investigate its Impact on the Growth. Chemosphere 2020, 258, 127348, 10.1016/j.chemosphere.2020.127348
Nandiyanto, A. B. D.; Okuyama, K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv. Powder Technol. 2011, 22, 1-19, 10.1016/j.apt.2010.09.011
Stunda-Zujeva, A.; Irbe, Z.; Berzina-Cimdina, L. Controlling the morphology of ceramic and composite powders obtained via spray drying-A review. Ceram. Int. 2017, 43, 11543-11551, 10.1016/j.ceramint.2017.05.023
Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the BET Equation Applicable to Microporous Adsorbents?. Stud. Surf. Sci. Catal. 2007, 160, 49-56, 10.1016/s0167-2991(07)80008-5
Fauth, F.; Boer, R.; Gil-Ortiz, F.; Popescu, C.; Vallcorba, O.; Peral, I.; Fullà, D.; Benach, J.; Juanhuix, J. The Crystallography Stations at the Alba Synchrotron. Eur. Phys. J. Plus 2015, 130, 160, 10.1140/epjp/i2015-15160-y
Chapon, L. C.; Manuel, P.; Radaelli, P. G.; Benson, C.; Perrott, L.; Ansell, S.; Rhodes, N. J.; Raspino, D.; Duxbury, D.; Spill, E. et al. Wish: The New Powder and Single Crystal Magnetic Diffractometer on the Second Target Station. Neutron News 2011, 22, 22-25, 10.1080/10448632.2011.569650
Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B Condens. Matter 1993, 192, 55-69, 10.1016/0921-4526(93)90108-i
Zupan, K.; Marinšek, M.; Pejovnik, S.; Maček, J.; Zore, K. Combustion Synthesis and the Influence of Precursor Packing on the Sintering Properties of LCC Nanopowders. J. Eur. Ceram. Soc. 2004, 24, 1935-1939, 10.1016/s0955-2219(03)00546-6
Waburg, M.; Müller-Buschbaum, H. ZnTa2O6Ein Neuer Vertreter des tri-α-PbO2-Typs (mit Ergänzenden Daten über ZnNb2O6). Z. Anorg. Allg. Chem. 1984, 508, 55-60, 10.1002/zaac.19845080109
Bernier, J. C.; Poix, P. Structural Study of Two Trirutile Oxide Containing Vanadium. Ann. Chem. 1968, 14, 119
Caubergh, S.; Matsubara, N.; Damay, F.; Maignan, A.; Fauth, F.; Manuel, P.; Khalyavin, D. D.; Vertruyen, B.; Martin, C. Original Network of Zigzag Chains in the β Polymorph of Fe2WO6: Crystal Structure and Magnetic Ordering. Inorg. Chem. 2020, 59, 9798-9806, 10.1021/acs.inorgchem.0c01024
Thomas, G.; Ropital, F. Influence des Gaz sur la Synthèse du Tungstate de Fer Fe2WO6-1. Etude Expérimentale. Mater. Chem. Phys. 1984, 11, 549-562, 10.1016/0254-0584(84)90054-3
Leiva, H.; Kershaw, R.; Dwight, K.; Wold, A. Preparation and Properties of the Systems Fe2-xCrxWO6, Fe2-xRhxWO6, and Cr2-xRhxWO6. J. Solid State Chem. 1983, 47, 293-300, 10.1016/0022-4596(83)90021-x
Müller, U. Symmetry Relationships between Crystal Structures; Oxford University Press: Oxford, 2013; p 199.
Sherman, D. M.; Waite, T. D. Electronic Spectra of Fe3+Oxides and Oxide Hydroxides in the Near IR to Near UV. Am. Mineral. 1985, 70, 1262-1269
Morris, R. V.; Lauer, H. V.; Lawson, C. A.; Gibson, E. K.; Nace, G. A.; Stewart, C. Spectral and Other Physicochemical Properties of Submicron Powders of Hematite (α-Fe2O3), Maghemite (γ-Fe2O3), Magnetite (Fe3O4), Goethite (α-FeOOH), and Lepidocrocite (γ-FeOOH). J. Geophys. Res. 1985, 90, 3126-3144, 10.1029/jb090ib04p03126
Marusak, L. A.; Messier, R.; White, W. B. Optical Absorption Spectrum of Hematite, αFe2O3near IR to UV. J. Phys. Chem. Solids 1980, 41, 981-984, 10.1016/0022-3697(80)90105-5
Galuza, A. I.; Beznosov, A. B.; Eremenko, V. V. Optical Absorption Edge in α-Fe2O3: The Exciton-Magnon Structure. Low Temp. Phys. 1998, 24, 726-729, 10.1063/1.593675
Chernyshova, I. V.; Ponnurangam, S.; Somasundaran, P. On the Origin of an Unusual Dependence of (Bio)chemical Reactivity of Ferric Hydroxides on Nanoparticle Size. Phys. Chem. Chem. Phys. 2010, 12, 14045-14056, 10.1039/c0cp00168f
Dondi, M.; Matteucci, F.; Cruciani, G.; Gasparotto, G.; Tobaldi, D. M. Pseudobrookite Ceramic Pigments: Crystal Structural, Optical and Technological Properties. Solid State Sci. 2007, 9, 362-369, 10.1016/j.solidstatesciences.2007.03.001
Grave, D. A.; Yatom, N.; Ellis, D. S.; Toroker, M. C.; Rothschild, A. The "Rust" Challenge: On the Correlations between Electronic Structure, Excited State Dynamics, and Photoelectrochemical Performance of Hematite Photoanodes for Solar Water Splitting. Adv. Mater. 2018, 30, 1706577, 10.1002/adma.201706577
Liao, P.; Carter, E. A. Optical Excitations in Hematite (α-Fe2O3) via Embedded Cluster Models: A CASPT2 Study. J. Phys. Chem. C 2011, 115, 20795-20805, 10.1021/jp206991v
Piccinin, S. The Band Structure and Optical Absorption of Hematite (α-Fe2O3): a First-Principles GW-BSE Study. Phys. Chem. Chem. Phys. 2019, 21, 2957-2967, 10.1039/c8cp07132b
Meng, Y.; Liu, X.-W.; Huo, C.-F.; Guo, W.-P.; Cao, D.-B.; Peng, Q.; Dearden, A.; Gonze, X.; Yang, Y.; Wang, J. et al. When Density Functional Approximations Meet Iron Oxides. J. Chem. Theory Comput. 2016, 12, 5132-5144, 10.1021/acs.jctc.6b00640
Liao, P.; Carter, E. A. Testing Variations of the GW Approximation on Strongly Correlated Transition Metal Oxides: Hematite (α-Fe2O3) as a Benchmark. Phys. Chem. Chem. Phys. 2011, 13, 15189-15199, 10.1039/c1cp20829b
Snir, N.; Toroker, M. C. The Operando Optical Spectrum of Hematite during Water Splitting through a GW-BSE Calculation. J. Chem. Theory Comput. 2020, 16, 4857-4864, 10.1021/acs.jctc.9b00595
Gesesse, G. D.; Gomis-Berenguer, A.; Barthe, M.-F.; Ania, C. O. On the Analysis of Diffuse Reflectance Measurements to Estimate the Optical Properties of Amorphous Porous Carbons and Semiconductor/Carbon Catalysts. J. Photochem. Photobiol., A 2020, 398, 112622, 10.1016/j.jphotochem.2020.112622
Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi 1966, 15, 627-637, 10.1002/pssb.19660150224
Botella, P.; López-Moreno, S.; Errandonea, D.; Manjón, F. J.; Sans, J. A.; Vie, D.; Vomiero, A. High-Pressure Characterization of Multifunctional CrVO4. J. Phys.: Condens. Matter 2020, 32, 385403, 10.1088/1361-648x/ab9408
Rajeshwar, K.; Hossain, M. K.; Macaluso, R. T.; Janáky, C.; Varga, A.; Kulesza, P. J. Review-Copper Oxide-Based Ternary and Quaternary Oxides: Where Solid-State Chemistry Meets Photoelectrochemistry. J. Electrochem. Soc. 2018, 165, H3192-H3206, 10.1149/2.0271804jes
Roy, D.; Samu, G. F.; Hossain, M. K.; Janáky, C.; Rajeshwar, K. On the Measured Optical Bandgap Values of Inorganic Oxide Semiconductors for Solar Fuels Generation. Catal. Today 2018, 300, 136-144, 10.1016/j.cattod.2017.03.016
Botella, P.; Errandonea, D.; Garg, A. B.; Rodriguez-Hernandez, P.; Muñoz, A.; Achary, S. N.; Vomiero, A. High-Pressure Characterization of the Optical and Electronic Properties of InVO4, InNbO4, and InTaO4. SN Appl. Sci. 2019, 1, 389, 10.1007/s42452-019-0406-7
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.