Alvarez M. A. Tranquilli G. Lewis S. Kippes N. Dubcovsky J. (2016). Genetic and physical mapping of the earliness per se locus Eps-Am1 in Triticum monococcum identifies EARLY FLOWERING 3 (ELF3) as a candidate gene. Funct. Integr. Genomics 16 365–382. 10.1007/s10142-016-0490-3 27085709
An H. Roussot C. Suárez-López P. Corbesier L. Vincent C. Piñeiro M. et al. (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131 3615–3626. 10.1242/dev.01231 15229176
Bendix C. Marshall C. M. Harmon F. G. (2015). Circadian clock genes universally control key agricultural traits. Mol. Plant 8 1135–1152. 10.1016/j.molp.2015.03.003 25772379
Boden S. A. Kavanová M. Finnegan E. J. Wigge P. A. (2013). Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol. 14:R65. 10.1186/gb-2013-14-6-r65 23800039
Boden S. A. Weiss D. Ross J. J. Davies N. W. Trevaskis B. Chandler P. M. et al. (2014). EARLY FLOWERING 3 regulates flowering in spring barley by mediating gibberellin production and flowering locus T expression. Plant Cell 26 1557–1569. 10.1105/tpc.114.123794 24781117
Borthwick H. A. Hendricks S. B. (1960). Photoperiodism in plants. Science 132 1223–1228. 10.1126/science.132.3435.1223 17801667
Bouché F. Lobet G. Tocquin P. Périlleux C. (2016). FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res. 44 D1167–D1171. 10.1093/nar/gkv1054 26476447
Bu T. Lu S. Wang K. Dong L. Li S. Xie Q. et al. (2021). A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation. Proc. Natl. Acad. Sci. U.S.A. 118:e2010241118. 10.1073/pnas.2010241118 33558416
Bullrich L. Appendino M. Tranquilli G. Lewis S. Dubcovsky J. (2002). Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor. Appl. Genet. 105 585–593. 10.1007/s00122-002-0982-5 12582508
Bunning E. (1937). Die endonome tagesrhythmik als grundlage der photoperiodischen reaktion. Ber. Deut. Bot. Ges. 54 590–607.
Capovilla G. Schmid M. Posé D. (2015). Control of flowering by ambient temperature. J. Exp. Bot. 66 59–69. 10.1093/jxb/eru416 25326628
Casal J. J. (2013). Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 64 403–427. 10.1146/annurev-arplant-050312-120221 23373700
Casao M. C. Karsai I. Igartua E. Gracia M. P. Veisz O. Casas A. M. (2011). Adaptation of barley to mild winters: a role for PPDH2. BMC Plant Biol. 11:164. 10.1186/1471-2229-11-164 22098798
Chen A. Li C. Hu W. Lau M. Y. Lin H. Rockwell N. C. et al. (2014). Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc. Natl. Acad. Sci. U.S.A. 111 10037–10044. 10.1073/pnas.1409795111 24961368
Cheng M.-C. Kathare P. K. Paik I. Huq E. (2021). Phytochrome signaling networks. Annu. Rev. Plant Biol. 72 217–244. 10.1146/annurev-arplant-080620-024221 33756095
Corbesier L. Vincent C. Jang S. Fornara F. Fan Q. Searle I. et al. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316 1030–1033. 10.1126/science.1141752 17446353
Covington M. F. (2001). ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell Online 13 1305–1316. 10.1105/tpc.13.6.1305 11402162
Covington M. F. Maloof J. N. Straume M. Kay S. A. Harmer S. L. (2008). Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 9:R130. 10.1186/gb-2008-9-8-r130 18710561
Creux N. Harmer S. (2019). Circadian rhythms in plants. Cold Spring Harb. Perspect. Biol. 11:a034611. 10.1101/cshperspect.a034611 31138544
Distelfeld A. Dubcovsky J. (2010). Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN2 and FT transcript levels. Mol. Genet. Genom. 283 223–232. 10.1007/s00438-009-0510-2 20063107
Dixon L. E. Karsai I. Kiss T. Adamski N. M. Liu Z. Ding Y. et al. (2019). Vernalization1 controls developmental responses of winter wheat under high ambient temperatures. Development 146:dev172684. 10.1242/dev.172684 30770359
Doyle M. R. Davis S. J. Bastow R. M. McWatters H. G. Kozma-Bognár L. Nagy F. et al. (2002). The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419 74–77. 10.1038/nature00954 12214234
Faure S. Turner A. S. Gruszka D. Christodoulou V. Davis S. J. von Korff M. et al. (2012). Mutation at the circadian clock gene early maturity 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc. Natl. Acad. Sci. U.S.A. 109 8328–8333. 10.1073/pnas.1120496109 22566625
Ford B. Deng W. Clausen J. Oliver S. Boden S. Hemming M. et al. (2016). Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3 -dependent manner. J. Exp. Bot. 67 5517–5528. 10.1093/jxb/erw317 27580625
Franklin K. A. Toledo-Ortiz G. Pyott D. E. Halliday K. J. (2014). Interaction of light and temperature signalling. J. Exp. Bot. 65 2859–2871. 10.1093/jxb/eru059 24569036
Gao M. Geng F. Klose C. Staudt A.-M. Huang H. Nguyen D. et al. (2019). Phytochromes measure photoperiod in Brachypodium. bioRxiv [Preprint]. 10.1101/697169
Goodstein D. M. Shu S. Howson R. Neupane R. Hayes R. D. Fazo J. et al. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40 D1178–D1186. 10.1093/nar/gkr944 22110026
Goto N. Kumagai T. Koornneef M. (1991). Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiol. Plant. 83 209–215. 10.1111/j.1399-3054.1991.tb02144.x
Gustafsson Å Hagberg A. Lundqvist U. (1960). The induction of early mutants in bonus barley. Hereditas 46 675–699. 10.1111/j.1601-5223.1960.tb03109.x
Hazen S. P. Schultz T. F. Pruneda-Paz J. L. Borevitz J. O. Ecker J. R. Kay S. A. (2005). LUX ARRYTHMO encodes a MYB domain protein essential for circadian rhythms. Proc. Natl. Acad. Sci. U.S.A. 102 10387–10392. 10.1073/pnas.0503029102 16006522
Hicks K. A. Albertson T. M. Wagner D. R. (2001). EARLY FLOWERING 3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13 1281–1292. 10.1105/tpc.010070
Hicks K. A. Millar A. J. Carré I. A. Somers D. E. Straume M. Meeks-Wagner D. R. et al. (1996). Conditional circadian dysfunction of the arabidopsis early-flowering 3 mutant. Science 274 790–792. 10.1126/science.274.5288.790 8864121
Higgins J. A. Bailey P. C. Laurie D. A. (2010). Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS One 5:e10065. 10.1371/journal.pone.0010065 20419097
Hu W. Figueroa-Balderas R. Chi-Ham C. Lagarias J. C. (2020). Regulation of monocot and dicot plant development with constitutively active alleles of phytochrome B. Plant Direct 4:e00210. 10.1002/pld3.210 32346668
Huang H. Gehan M. A. Huss S. E. Alvarez S. Lizarraga C. Gruebbling E. L. et al. (2017). Cross-species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots. Plant Direct 1: e00018. 10.1002/pld3.18 31245666
Huang H. Nusinow D. A. (2016). Into the evening: complex interactions in the Arabidopsis circadian clock. Trends Genet. 32 674–686. 10.1016/j.tig.2016.08.002 27594171
Itoh H. Tanaka Y. Izawa T. (2018). Genetic relationship between phytochromes and OsELF3–1 reveals the mode of regulation for the suppression of phytochrome signaling in rice. Plant Cell Physiol. 60 549–561. 10.1093/pcp/pcy225 30476313
Johansson M. Staiger D. (2014). Time to flower: interplay between photoperiod and the circadian clock. J. Exp. Bot. 66 719–730. 10.1093/jxb/eru441 25371508
Jung J.-H. Barbosa A. D. Hutin S. Kumita J. R. Gao M. Derwort D. et al. (2020). A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585 256–260. 10.1038/s41586-020-2644-7 32848244
Kim W.-Y. Hicks K. A. Somers D. E. (2005). Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiol. 139 1557–1569. 10.1104/pp.105.067173 16258016
Kippes N. VanGessel C. Hamilton J. Akpinar A. Budak H. Dubcovsky J. et al. (2020). Effect of phyB and phyC loss-of-function mutations on the wheat transcriptome under short and long day photoperiods. BMC Plant Biol. 20:297. 10.1186/s12870-020-02506-0 32600268
Legris M. Ince Y. Ç Fankhauser C. (2019). Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat. Commun. 10:5219. 10.1038/s41467-019-13045-0 31745087
Leivar P. Quail P. H. (2011). PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci. 16 19–28. 10.1016/j.tplants.2010.08.003 20833098
Li C. Dubcovsky J. (2008). Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J. 55 543–554. 10.1111/j.1365-313x.2008.03526.x 18433437
Li M. Kennedy A. Huybrechts M. Dochy N. Geuten K. (2019). The effect of ambient temperature on Brachypodium distachyon development. Front. Plant Sci. 10:1011. 10.3389/fpls.2019.01011 31497030
Lu S. Zhao X. Hu Y. Liu S. Nan H. Li X. et al. (2017). Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat. Genet. 49 773–779. 10.1038/ng.3819 28319089
Lucas M. Prat S. (2014). PIFs get BRright: phytochrome interacting factors as integrators of light and hormonal signals. New Phytol. 202 1126–1141. 10.1111/nph.12725 24571056
Lundqvist U. (2009). Eighty Years of Scandinavian Barley Mutation Genetics and Breeding. Rome: Food and Agriculture Organization of the United Nations.
MacKinnon K. J. Cole B. J. Yu C. Coomey J. H. Hartwick N. T. Remigereau M. et al. (2020). Changes in ambient temperature are the prevailing cue in determining Brachypodium distachyon diurnal gene regulation. New Phytol. 227 1709–1724. 10.1111/nph.16507 32112414
Mathews S. (2010). Evolutionary studies illuminate the structural-functional model of plant phytochromes. Plant Cell 22 4–16. 10.1105/tpc.109.072280 20118225
Matos D. A. Cole B. J. Whitney I. P. MacKinnon K. J.-M. Kay S. A. Hazen S. P. (2014). Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon. PLoS One 9:e100072. 10.1371/journal.pone.0100072 24927130
Matsubara K. Ogiso-Tanaka E. Hori K. Ebana K. Ando T. Yano M. (2012). Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol. 53 709–716. 10.1093/pcp/pcs028 22399582
Möglich A. Yang X. Ayers R. A. Moffat K. (2010). Structure and function of plant photoreceptors. Annu. Rev. Plant Biol. 61 21–47. 10.1146/annurev-arplant-042809-112259 20192744
Mulki M. A. von Korff M. (2015). Constans controls floral repression by up-regulating vernalization2 (VRN-H2) in Barley. Plant Physiol. 170 325–337. 10.1104/pp.15.01350 26556793
Nieto C. López-Salmerón V. Davière J.-M. Prat S. (2015). ELF3-PIF4 interaction regulates plant growth independently of the evening complex. Curr. Biol. 25 187–193. 10.1016/j.cub.2014.10.070 25557667
Nishida H. Ishihara D. Ishii M. Kaneko T. Kawahigashi H. Akashi Y. et al. (2013). Phytochrome C is a key factor controlling long-day flowering in Barley. Plant Physiol. 163 804–814. 10.1104/pp.113.222570 24014575
Oakenfull R. J. Davis S. J. (2017). Shining a light on the Arabidopsis circadian clock. Plant Cell Environ. 40 2571–2585. 10.1111/pce.13033 28732105
Paik I. Huq E. (2019). Plant photoreceptors: multi-functional sensory proteins and their signaling networks. Semin. Cell Dev. Biol. 92 114–121. 10.1016/j.semcdb.2019.03.007 30946988
Pearce S. Kippes N. Chen A. Debernardi J. M. Dubcovsky J. (2016). RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biol. 16:141. 10.1186/s12870-016-0831-3 27329140
Pearce S. Shaw L. M. Lin H. Cotter J. D. Li C. Dubcovsky J. (2017). Night-break experiments shed light on the photoperiod1-mediated flowering. Plant Physiol. 174 1139–1150. 10.1104/pp.17.00361 28408541
Périlleux C. Bernier G. Kinet J.-M. (1994). Circadian rhythms and the induction of flowering in the long-day grass Lolium temulentum L. Plant Cell Environ. 17 755–761. 10.1111/j.1365-3040.1994.tb00168.x
Purvis O. N. Gregory F. G. (1937). Studies in vernalisation of cereals: i. a comparative study of vernalisation of winter rye by low temperature and by short days. Ann. Bot 1 569–591. 10.2307/42906574
Qin Z. Bai Y. Muhammad S. Wu X. Deng P. Wu J. et al. (2019). Divergent roles of FT-like 9 in flowering transition under different day lengths in Brachypodium distachyon. Nat. Commun. 10:812. 10.1038/s41467-019-08785-y 30778068
Quail P. H. (2002). Phytochrome photosensory signalling networks. Nat. Rev. Mol. Cell Bio. 3 85–93. 10.1038/nrm728 11836510
Ream T. S. Woods D. P. Amasino R. M. (2012). The molecular basis of vernalization in different plant groups. Cold Spring Harb. Symp. Quant Biol. 77 105–115. 10.1101/sqb.2013.77.014449 23619014
Ream T. S. Woods D. P. Schwartz C. J. Sanabria C. P. Mahoy J. A. Walters E. M. et al. (2014). Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon. Plant Physiol. 164 694–709. 10.1104/pp.113.232678 24357601
Rubenach A. J. S. Hecht V. Schoor J. K. V. Liew L. C. Aubert G. Burstin J. et al. (2017). EARLY FLOWERING 3 redundancy fine-tunes photoperiod sensitivity. Plant Physiol. 173 2253–2264. 10.1104/pp.16.01738 28202598
Saito H. Ogiso-Tanaka E. Okumoto Y. Yoshitake Y. Izumi H. Yokoo T. et al. (2012). Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene GHD7 under both short- and long-day conditions. Plant Cell Physiol. 53 717–728. 10.1093/pcp/pcs029 22422935
Seaton D. D. Toledo-Ortiz G. Ganpudi A. Kubota A. Imaizumi T. Halliday K. J. (2018). Dawn and photoperiod sensing by phytochrome A. Proc. Natl. Acad. Sci. U.S.A. 115:201803398. 10.1073/pnas.1803398115 30254157
Shaw L. M. Li C. Woods D. P. Alvarez M. A. Lin H. Lau M. Y. et al. (2020). Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat. PLoS Genet. 16:e1008812. 10.1371/journal.pgen.1008812 32658893
Shaw L. M. Turner A. S. Herry L. Griffiths S. Laurie D. A. (2013). Mutant Alleles of Photoperiod-1 in Wheat (Triticum aestivum L.) that confer a late flowering phenotype in long days. PLoS One 8:e79459. 10.1371/journal.pone.0079459 24244507
Song Y. H. Kubota A. Kwon M. S. Covington M. F. Lee N. Taagen E. R. et al. (2018). Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nat. Plants 4 824–835. 10.1038/s41477-018-0253-3 30250277
Song Y. H. Shim J. S. Kinmonth-Schultz H. A. Imaizumi T. (2015). Photoperiodic flowering: time measurement mechanisms in leaves. Annu. Rev. Plant Biol. 66 441–464. 10.1146/annurev-arplant-043014-115555 25534513
Strasser B. Alvarez M. J. Califano A. Cerdán P. D. (2009). A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature. Plant J. 58 629–640. 10.1111/j.1365-313x.2009.03811.x 19187043
Suárez-López P. Wheatley K. Robson F. Onouchi H. Valverde F. Coupland G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410 1116–1120. 10.1038/35074138 11323677
Tamaki S. Matsuo S. Wong H. L. Yokoi S. Shimamoto K. (2007). Hd3a protein is a mobile flowering signal in rice. Science 316 1033–1036. 10.1126/science.1141753 17446351
Thines B. Harmon F. G. (2010). Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proc. Natl. Acad. Sci. U.S.A. 107 3257–3262. 10.1073/pnas.0911006107 20133619
Turner A. Beales J. Faure S. Dunford R. P. Laurie D. A. (2005). The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in Barley. Science 310 1031–1034. 10.1126/science.1117619 16284181
Ugarte C. C. Trupkin S. A. Ghiglione H. Slafer G. Casal J. J. (2010). Low red/far-red ratios delay spike and stem growth in wheat. J. Exp. Bot. 61 3151–3162. 10.1093/jxb/erq140 20497971
Valverde F. Mouradov A. Soppe W. Ravenscroft D. Samach A. Coupland G. (2004). Photoreceptor regulation of constans protein in photoperiodic flowering. Science 303 1003–1006. 10.1126/science.1091761 14963328
Vandesompele J. Preter K. D. Pattyn F. Poppe B. Roy N. V. Paepe A. D. et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:research0034. 10.1186/gb-2002-3-7-research0034 12184808
Vogel J. Hill T. (2008). High-efficiency agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep. 27 471–478. 10.1007/s00299-007-0472-y 17999063
Wang J. Wen W. Hanif M. Xia X. Wang H. Liu S. et al. (2016). TaELF3-1DL, a homolog of ELF3, is associated with heading date in bread wheat. Mol. Breed. 36:161. 10.1007/s11032-016-0585-5
Weller J. L. Liew L. C. Hecht V. F. G. Rajandran V. Laurie R. E. Ridge S. et al. (2012). A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc. Natl. Acad. Sci. U.S.A. 109 21158–21163. 10.1073/pnas.1207943110 23213200
Wilhelm E. P. Turner A. S. Laurie D. A. (2009). Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor. Appl. Genet. 118 285–294. 10.1007/s00122-008-0898-9 18839130
Willige B. C. Zander M. Yoo C. Y. Phan A. Garza R. M. Trigg S. A. et al. (2021). Phytochrome-interacting factors trigger environmentally responsive chromatin dynamics in plants. Nat. Genet. 53 955–961. 10.1038/s41588-021-00882-3 34140685
Wilson P. Streich J. Borevitz J. (2015). “Genetics and genomics of Brachypodium,” in Plant Genetics and Genomics: Crops and Models, ed. Vogel J. P. (New York, NY: Springer International Publishing), 107–127. 10.1007/7397_2015_18
Woods D. Dong Y. Bouche F. Bednarek R. Rowe M. Ream T. et al. (2019). A florigen paralog is required for short-day vernalization in a pooid grass. Elife 8:e42153. 10.7554/elife.42153 30618375
Woods D. P. Amasino R. M. (2015). “Genetics and genomics of Brachypodium,” in Plant Genetics and Genomics: Crops and Models, ed. Vogel J. P. (New York, NY: Springer International Publishing), 259–273. 10.1007/7397_2015_10
Woods D. P. Bednarek R. Bouché F. Gordon S. P. Vogel J. P. Garvin D. F. et al. (2017). Genetic architecture of flowering-time variation in Brachypodium distachyon. Plant Physiol. 173 269–279. 10.1104/pp.16.01178 27742753
Woods D. P. McKeown M. A. Dong Y. Preston J. C. Amasino R. M. (2016). Evolution of VRN2/Ghd7-like genes in vernalization-mediated repression of grass flowering. Plant Physiol. 170 2124–2135. 10.1104/pp.15.01279 26848096
Woods D. P. Ream T. S. Minevich G. Hobert O. Amasino R. M. (2014). Phytochrome C is an essential light receptor for photoperiodic flowering in the temperate grass, Brachypodium distachyon. Genetics 198 397–408. 10.1534/genetics.114.166785 25023399
Yang Y. Peng Q. Chen G.-X. Li X.-H. Wu C.-Y. (2013). OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Mol. Plant 6 202–215. 10.1093/mp/sss062 22888152
Zagotta M. T. Hicks K. A. Jacobs C. I. Young J. C. Hangarter R. P. Meeks-Wagner D. R. (1996). The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. 10 691–702. 10.1046/j.1365-313x.1996.10040691.x 8893545
Zakhrabekova S. Gough S. P. Braumann I. Müller A. H. Lundqvist J. Ahmann K. et al. (2012). Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proc. Natl. Acad. Sci. U.S.A. 109 4326–4331. 10.1073/pnas.1113009109 22371569
Zhao J. Huang X. Ouyang X. Chen W. Du A. Zhu L. et al. (2012). OsELF3-1, an ortholog of Arabidopsis EARLY FLOWERING 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS One 7:e43705. 10.1371/journal.pone.0043705 22912900