Artemenko, C., Moeller, K., Huber, S., & Klein, E. (2015). Differential influences of unilateral tDCS over the intraparietal cortex on numerical cognition. Frontiers in Human Neuroscience, 9, 110. DOI: https://doi.org/10.3389/fnhum.2015.00110
Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., Jaeggi, S. M., & Jonides, J. (2016). Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28, 1419–1432. DOI: https://doi.org/10.1162/jocn_a_00979
Barch, D. M., & Ceaser, A. (2012). Cognition in schizophrenia: Core psychological and neural mechanisms. Trends in Cognitive Sciences, 16(1), 27–34. DOI: https://doi.org/10.1016/j.tics.2011.11.015
Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology: General, 133, 83–100. DOI: https://doi.org/10.1037/0096-3445.133.1.83
Blumberg, E. J., Peterson, M. S., & Parasuraman, R. (2015). Enhancing multiple object tracking performance with noninvasive brain stimulation: a causal role for the anterior intraparietal sulcus. Frontiers in Systems Neuroscience, 9, 3. DOI: https://doi.org/10.3389/fnsys.2015.00003
Bogdanov, M., & Schwabe, L. (2016). Transcranial Stimulation of the Dorsolateral Prefrontal Cortex Prevents Stress-Induced Working Memory Deficits. Journal of Neuroscience, 36, 1429–1437. DOI: https://doi.org/10.1523/JNEUROSCI.3687-15.2016
Brunyé, T. T., Moran, J. M., Holmes, A., Mahoney, C. R., & Taylor, H. A. (2017). Non-invasive brain stimulation targeting the right fusiform gyrus selectively increases working memory for faces. Brain and Cognition, 113, 32–39. DOI: https://doi.org/10.1016/j.bandc.2017.01.006
Chib, V. S., Yun, K., Takahashi, H., & Shimojo, S. (2013). Noninvasive remote activation of the ventral midbrain by transcranial direct current stimulation of prefrontal cortex. Translational Psychiatry, 3, e268–e268. DOI: https://doi.org/10.1038/tp.2013.44
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215. DOI: https://doi.org/10.1038/ nrn755
Cowan, N. (1995). Attention and memory: An integrated framework. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780195119107.001.0001
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. DOI: https://doi.org/10.1146/ annurev-psych-113011-143750
Dunning, D. L., Westgate, B., & Adlam, A. L. R. (2016). A meta-analysis of working memory impairments in survivors of moderate-to-severe traumatic brain injury. Neuropsychology, 30, 811–819. DOI: https://doi.org/10.1037/ neu0000285
Eriksson, J., Vogel, E. K., Lansner, A., Bergström F., & Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron, 88, 33–46. DOI: https://doi.org/10.1016/j.neuron.2015.09.020
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160. DOI: https://doi.org/10.3758/BRM.41.4.1149
Fonteneau, C., Mondino, M., Arns, M., Baeken, C., Bikson, M., Brunoni, A. R., Burke, M. J., Neuvonen, T., Padberg, F., Pascual-Leone, A., Poulet, E., Ruffini, G., Santarnecchi, E., Sauvaget, A., Schellhorn, K., Suaud-Chagny, M. F., Palm, U., & Brunelin, J. (2019). Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimulation, 12, 668–673. DOI: https://doi.org/10.1016/j.brs.2018.12.977
Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., … & Pascual-Leone, A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166, 23–30. DOI: https://doi.org/10.1007/s00221-005-2334-6
Friehs, M. A., & Frings, C. (2019). Offline beats online: transcranial direct current stimulation timing influences on working memory. Neuroreport, 30, 795–799. DOI: https://doi.org/10.1097/WNR.0000000000001272
Gözenman, F., & Berryhill, M. E. (2016). Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task. Neuroscience Letters, 629, 105–109. DOI: https://doi.org/10.1016/j.neulet.2016.06.056
Heekeren, H. R., Marrett, S., & Ungerleider, L. G. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews Neuroscience, 9(6), 467–479. DOI: https://doi.org/10.1038/nrn2374
Hill, A. T., Fitzgerald, P. B., & Hoy, K. E. (2016). Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimulation, 9, 197–208. DOI: https://doi.org/10.1016/j.brs.2015.10.006
Horvath, J. C., Forte, J. D., & Carter, O. (2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8, 535–550. DOI: https://doi.org/10.1016/j.brs.2015.01.400
Jacobson, L., Goren, N., Lavidor, M., & Levy, D. A. (2012). Oppositional transcranial direct current stimulation (tDCS) of parietal substrates of attention during encoding modulates episodic memory. Brain Research, 1439, 66–72. DOI: https://doi.org/10.1016/j.brainres.2011.12.036
JASP Team. (2019). JASP(Version 0.9.2) [Computer software] (BibTeX).
Jeffreys, H. (1998). The theory of probability. OUP Oxford.
Katsoulaki, M., Kastrinis, A., & Tsekoura, M. (2017). The effects of anodal transcranial direct current stimulation on working memory. GeNeDis 2016, 283–289. DOI: https://doi.org/10.1007/978-3-319-57379-3_25
Kim, Y., Woo, J., & Woo, M. (2017). Effects of Stress and Task Difficulty on Working Memory and Cortical Networking. Perceptual and Motor Skills, 124, 1194–1210. DOI: https://doi.org/10.1177/0031512517732851
Kofler, M. J., Sarver, D. E., Harmon, S. L., Moltisanti, A., Aduen, P. A., Soto, E. F., & Ferretti, N. (2018). Working memory and organizational skills problems in ADHD. Journal of Child Psychology and Psychiatry, 59, 57–67. DOI: https://doi.org/10.1111/jcpp.12773
Kuo, H. I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain Stimulation, 6, 644–648. DOI: https://doi.org/10.1016/j.brs.2012.09.010
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. DOI: https://doi.org/10.1038/36846
Lukasik, K. M., Lehtonen, M., Salmi, J., Meinzer, M., Joutsa, J., & Laine, M. (2018). No effects of stimulating the left ventrolateral prefrontal cortex with tDCS on verbal working memory updating. Frontiers in Neuroscience, 11, 738. DOI: https://doi.org/10.3389/fnins.2017.00738
Majerus, S., Attout, L., D’Argembeau, A., Degueldre, C., Fias, W., Maquet, P., … & Balteau, E. (2012). Attention supports verbal short-term memory via competition between dorsal and ventral attention networks. Cerebral Cortex, 22, 1086–1097. DOI: https://doi.org/10.1093/cercor/bhr174
Majerus, S., Cowan, N., Péters, F., Van Calster, L., Phillips, C., & Schrouff, J. (2016). Cross-modal decoding of neural patterns associated with working memory: Evidence for attention-based accounts of working memory. Cerebral Cortex, 26, 166–179. DOI: https://doi.org/10.1093/cercor/ bhu189
Majerus, S., D’Argembeau, A., Martinez Perez, T., Belayachi, S., Van der Linden, M., Collette, F., … & Maquet, P. (2010). The commonality of neural networks for verbal and visual short-term memory. Journal of cognitive neuroscience, 22, 2570–2593. DOI: https://doi.org/10.1162/jocn.2009.21378
Mancuso, L. E., Ilieva, I. P., Hamilton, R. H., & Farah, M. J. (2016). Does transcranial direct current stimulation improve healthy working memory?: a meta-analytic review. Journal of Cognitive Neuroscience, 28, 1063–1089. DOI: https://doi.org/10.1162/jocn_a_00956
Marshall, L., Mölle, M., Siebner, H. R., & Born, J. (2005). Bifrontal transcranial direct current stimulation slows reaction time in a working memory task. BMC Neuroscience, 6, 1–7. DOI: https://doi.org/10.1186/1471-2202-6-23
Medina, J., & Cason, S. (2017). No evidential value in samples of transcranial direct current stimulation (tDCS) studies of cognition and working memory in healthy populations. Cortex, 94, 131–141. DOI: https://doi.org/10.1016/j.cortex.2017.06.021
Meier, B., & Sauter, P. (2018). Boosting memory by tDCS to frontal or parietal brain regions? A study of the enactment effect shows no effects for immediate and delayed recognition. Frontiers in Psychology, 9, 867. DOI: https://doi.org/10.3389/fpsyg.2018.00867
Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49, 270–291. DOI: https://doi.org/10.1037/ a0028228
Moos, K., Vossel, S., Weidner, R., Sparing, R., & Fink, G. R. (2012). Modulation of top-down control of visual attention by cathodal tDCS over right IPS. Journal of Neuroscience, 32, 16360–16368. DOI: https://doi.org/10.1523/JNEUROSCI.6233-11.2012
Nikolin, S., Lauf, S., Loo, C. K., & Martin, D. (2019). Effects of high-definition transcranial direct current stimulation (HD-tDCS) of the intraparietal sulcus and dorsolateral prefrontal cortex on working memory and divided attention. Frontiers in Integrative Neuroscience, 12, 64. DOI: https://doi.org/10.3389/fnint.2018.00064
Nikolin, S., Martin, D., Loo, C. K., & Boonstra, T. W. (2018). Effects of TDCS dosage on working memory in healthy participants. Brain Stimulation, 11, 518–527. DOI: https://doi. org/10.1016/j.brs.2018.01.003
Nilsson, J., Lebedev, A. V., Rydström, A., & Lövdén, M. (2017). Direct-current stimulation does little to improve the outcome of working memory training in older adults. Psychological Science, 28, 907–920. DOI: https://doi.org/10.1177/0956797617698139
Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527, 633–639. DOI: https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x
Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17, 299–320. DOI: https://doi.org/10.1037//08827974.17.2.299
Robison, M. K., McGuirk, W. P., & Unsworth, N. (2017). No evidence for enhancements to visual working memory with transcranial direct current stimulation to prefrontal or posterior parietal cortices. Behavioral Neuroscience, 131(4), 277–280. DOI: https://doi.org/10.1037/bne0000202
Roe, J. M., Nesheim, M., Mathiesen, N. C., Moberget, T., Alnæs, D., & Sneve, M. H. (2016). The effects of tDCS upon sustained visual attention are dependent on cognitive load. Neuropsychologia, 80, 1–8. DOI: https://doi.org/10.1016/j.neuropsychologia.2015.11.005
Ruf, S. P., Fallgatter, A. J., & Plewnia, C. (2017). Augmentation of working memory training by transcranial direct current stimulation (tDCS). Scientific Reports, 7, 1–11. DOI: https://doi.org/10.1038/s41598-017-01055-1
Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2014). p-curve and effect size: Correcting for publication bias using only significant results. Perspectives on Psychological Science, 9, 666–681. DOI: https://doi.org/10.1177/1745691614553988
Soveri, A., Lehtonen, M., Karlsson, L. C., Lukasik, K., Antfolk, J., & Laine, M. (2018). Test–retest reliability of five frequently used executive tasks in healthy adults. Applied Neuropsychology: Adult, 25, 155–165. DOI: https://doi.org/10.1080/23279095.2016.1263795
Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652–654. DOI: https://doi.org/10.1126/science.153.3736.652
Talsma, L. J., Kroese, H. A., & Slagter, H. A. (2017). Boosting cognition: effects of multiple-session transcranial direct current stimulation on working memory. Journal of Cognitive Neuroscience, 29, 755–768. DOI: https://doi.org/10.1162/ jocn_a_01077
Thair, H., Holloway, A. L., Newport, R., & Smith, A. D. (2017). Transcranial direct current stimulation (tDCS): a beginner’s guide for design and implementation. Frontiers in Neuroscience, 11, 641. DOI: https://doi.org/10.3389/fnins.2017.00641
Todd, J. J., Fougnie, D., & Marois, R. (2005). Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness. Psychological Science, 16, 965–972. DOI: https://doi.org/10.1111/j.1467-9280.2005.01645.x
Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751–754. DOI: https://doi.org/10.1038/nature02466
Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. The Neuroscientist, 20, 150–159. DOI: https://doi.org/10.1177/1073858413494269
Wang, J., Wen, J. B., & Li, X. L. (2018). No effect of transcranial direct current stimulation of the dorsolateral prefrontal cortex on short-term memory. CNS Neuroscience & Therapeutics, 24, 58–63. DOI: https://doi.org/10.1111/cns.12779
Wang, S., Itthipuripat, S., & Ku, Y. (2020). Encoding strategy mediates the effect of electrical stimulation over posterior parietal cortex on visual short-term memory. Cortex, 128, 203–217. DOI: https://doi.org/10.1016/j.cortex.2020.03.005
Westwood, S. J., & Romani, C. (2018). Null effects on working memory and verbal fluency tasks when applying anodal tDCS to the inferior frontal gyrus of healthy participants. Frontiers in Neuroscience, 12, 166. DOI: https://doi.org/10.3389/fnins.2018.00166
Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91–95. DOI: https://doi.org/10.1038/ nature04262