André da Costa, C., Pasluosta, C.F., Eskofier, B., Bandeira da Silva, D., da Rosa Righi, R., Internet of health things: toward intelligent vital signs monitoring in hospital wards. Artif. Intell. Med. 89 (2018), 61–69.
Tarver, J., Sezen-Edmonds, M., Yoo, J.E., Loo, Y.-L., Organic electronic devices with water-dispersible conducting polymers. Comprehensive Nanoscience and Technology, 2011, 413–446.
Wolfart, F., Hryniewicz, B.M., Góes, M.S., Corrêa, C.M., Torresi, R., Minadeo, M.A.O.S., Córdoba de Torresi, S.I., Oliveira, R.D., Marchesi, L.F., Vidotti, M., Conducting polymers revisited: applications in energy, electrochromism and molecular recognition. J. Solid State Electrochem. 21:9 (2017), 2489–2515.
Wen, Y., Xu, J., Scientific importance of water-processable PEDOT–PSS and preparation, challenge and new application in sensors of its film electrode: a review. J. Polym. Sci. Part A Polym. Chem. 55:7 (2017), 1121–1150.
Döbbelin, M., Marcilla, R., Salsamendi, M., Pozo-Gonzalo, C., Carrasco, P.M., Pomposo, J.A., Mecerreyes, D., Influence of ionic liquids on the electrical conductivity and morphology of PEDOT:PSS films. Chem. Mater. 19:9 (2007), 2147–2149.
Hassan, M.U., Liu, Y.C., ul Hasan, K., Butt, H., Chang, J.F., Friend, R.H., Highly efficient PLEDs based on poly(9,9-dioctylfluorene) and Super Yellow blend with Cs2CO3 modified cathode. Appl. Mat. Today 1:1 (2015), 45–51.
Hakansson, A., Han, S., Wang, S., Lu, J., Braun, S., Fahlman, M., Berggren, M., Crispin, X., Fabiano, S., Effect of (3-Glycidyloxypropyl) trimethoxysilane (GOPS) on the electrical properties of PEDOT:PSS films. J. Polymer Sci. B: Polymer Physics 55 (2017), 814–820.
Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., Reynolds, J.R., Poly(3,4- ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12:7 (2000), 481–494.
Lövenich, W., PEDOT-properties and applications. Polym. Sci. - Ser. C 56:1 (2014), 135–143.
Shi, H., Liu, C., Jiang, Q., Xu, J., Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv. Electron. Mater. 1:4 (2015), 1–16.
Gomes, J.M., Silva, S.S., Reis, R.L., Biocompatible ionic liquids: fundamental behaviours and applications. Chem. Soc. Rev. 48:15 (2019), 4317–4335.
Dimitriev, O.P., Grinko, D.A., Noskov, Yu.V., Ogurtsov, N.A., Pud, A.A., PEDOT:PSS films—Effect of organic solvent additives and annealing on the film conductivity. Synth. Met. 159 (2009), 2237–2239.
Pathak, C.S., Singh, J.P., Singh, R., Effect of dimethyl sulfoxide on the electrical properties of PEDOT:PSS/n-Si heterojunction diodes. Curr. Appl. Phys. 15 (2015), 528–534.
Kim, B., Hwang, J.U., Kim, E., Chloride transport in conductive polymer films for an n-type thermoelectric platform. Energy Environ. Sci. 13 (2020), 859–867.
Gu, P., Zheng, M., Zhao, Q., Xiao, X., Xue, H., Pang, H., Rechargeable zinc-air batteries: a promising way to green energy. J. Mater. Chem. A 5:17 (2017), 7651–7666.
Sapkota, P., Kim, H., Zinc-air fuel cell, a potential candidate for alternative energy. J. Ind. Eng. Chem. 15:4 (2009), 445–450.
Schroder, D.K., Semiconductor Material and Device Characterization. 3rd edition, 2006, John Wiley & Sons.
Leach, R., Surface Topography Measurement Instrumentation. 2nd edition, 2014, Elsevier.
Stokes, D.J., Principles and Practice of Variable pressure/environmental Scanning Electron Microscopy (VP-ESEM). 1st edition, 2008, John Wiley & Sons.
Zhao, F., Armstrong, T.J., Virkar, A.V., Measurement of O2-N2 effective diffusivity in porous media at high temperatures using an electrochemical cell. J. Electrochem. Soc. 150 (2003), A249–A256.
Machrafi, H., Universal relation between the density and the viscosity of dispersions of nanoparticles and stabilized emulsions. Nanoscale 12 (2020), 15081–15101.
Machrafi, H., Extended Non-Equilibrium Thermodynamics: From Principles to Applications in Nanosystems. 1st edn, 2019, Taylor & Francis Group, London.
Machrafi, H., Lebon, G., Fluid flow through porous and nanoporous media within the prisme of extended thermodynamics: emphasis on the notion of permeability. Microfluid. Nanofluidics, 22, 2018, 65.
Private communication with Xavier Crispin from the “Laboratory of Organic Electronics, Department of Science and Technology, Linköping University”, communicating that micro- to nanoporous scales can be expected, so that we estimate the pore size by 1 μm.
Zhu, C., Zhai, J., Wen, D., Dong, S., Graphene oxide/polypyrrole nanocomposites: one-step Electrochemical doping, coating and synergistic effect for energy storage. J. Mater. Chem. 22:13 (2012), 6300–6306.
Marzocchi, M., Gualandi, I., Calienni, M., Zironi, I., Scavetta, E., Castellani, G., Fraboni, B., Physical and electrochemical properties of PEDOT:PSS as a tool for controlling cell growth. ACS Appl. Mater. Interfaces 7:32 (2015), 17993–18003.
Yang, M., Zhang, Y., Zhang, H., Li, Z., Characterization of PEDOT:PSS as a biocompatible conductive material. 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xi'an, China, 2015, 149–151.
Karagkiozaki, V., Karagiannidis, P.G., Gioti, M., Kavatzikidou, P., Georgiou, D., Georgaraki, E., Logothetidis, S., Bioelectronics meets nanomedicine for cardiovascular implants: PEDOT-based nanocoatings for tissue regeneration. Biochim. Biophys. Acta 1830:9 (2013), 4294–4304.
Chen, G., Rastak, R., Wang, Y., Yan, H., Feig, V., Liu, Y., Jiang, Y., Chen, S., Lian, F., Molina-Lopez, F., Jin, L., Cui, K., Chung, J.W., Pop, E., Linder, C., Bao, Z., Strain- and strain-rate-invariant conductance in a stretchable and compressible 3D conducting polymer foam. Matter 1:1 (2019), 205–218.
Kirchmeyer, S., Reuter, K., Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 15:21 (2005), 2077–2088.
Babu, K.S., Reddy, A.R., Sujatha, C., Reddy, K.V., Mallika, A.N., Synthesis and optical characterization of porous ZnO. J. Adv. Ceram. 2:3 (2013), 260–265.
Sigma Aldrich, IR Spectrum Table & Chart: https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html. Accessed 26 February 2021.