Crichton, R.R., Pierre, J.L., Old iron, young copper: from Mars to Venus. Biometals 14 (2001), 99–112 http://www.ncbi.nlm.nih.gov/pubmed/11508852.
Magnani, D., Solioz, M., How bacteria handle copper. Nies, D.H., Silver, S., (eds.) Microbiology of Heavy Metals, 2007, Springer, Berlin, 259–285.
Kaplan, J.H., Lutsenko, S., Copper transport in mammalian cells: special care for a metal with special needs. J. Biol. Chem. 284 (2009), 25461–25465 http://www.ncbi.nlm.nih.gov/pubmed/19602511.
Kim, B.E., Nevitt, T., Thiele, D.J., Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 4 (2008), 176–185 http://www.ncbi.nlm.nih.gov/pubmed/18277979.
Tottey, S., Waldron, K.J., Firbank, S.J., Reale, B., Bessant, C., Sato, K., Cheek, T.R., Gray, J., Banfield, M.J., Dennison, C., Robinson, N.J., Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455 (2008), 1138–1142 http://www.ncbi.nlm.nih.gov/pubmed/18948958.
Grass, G., Rensing, C., Genes involved in copper homeostasis in Escherichia coli. J. Bacteriol. 183 (2001), 2145–2147 http://www.ncbi.nlm.nih.gov/pubmed/11222619.
Rensing, C., Grass, G., Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27 (2003), 197–213 http://www.ncbi.nlm.nih.gov/pubmed/12829268.
Solomon, E.I., Augustine, A.J., Yoon, J., O2 reduction to H2O by the multicopper oxidases. Dalton Trans. 30 (2008), 3921–3932 http://www.ncbi.nlm.nih.gov/pubmed/18648693.
Quintanar, L., Stoj, C., Taylor, A.B., Hart, P.J., Kosman, D.J., Solomon, E.I., Shall we dance? How a multicopper oxidase chooses its electron transfer partner. Acc. Chem. Res. 40 (2007), 445–452 http://www.ncbi.nlm.nih.gov/pubmed/17425282.
Kosman, D.J., Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. J. Biol. Inorg. Chem. 15 (2010), 15–28 http://www.ncbi.nlm.nih.gov/pubmed/19816718.
Sirim, D., Wagner, F., Wang, L., Schmid, R.D., Pleiss, J., The Laccase Engineering Database: a Classification and Analysis System for Laccases and Related Multicopper Oxidases. 2011, Database, Oxford) (2011) bar006 http://www.ncbi.nlm.nih.gov/pubmed/21498547.
Stoj, C.S., Augustine, A.J., Solomon, E.I., Kosman, D.J., Structure-function analysis of the cuprous oxidase activity in Fet3p from Saccharomyces cerevisiae. J. Biol. Chem. 282 (2007), 7862–7868 http://www.ncbi.nlm.nih.gov/pubmed/17220296.
Djoko, K.Y., Chong, L.X., Wedd, A.G., Xiao, Z., Reaction mechanisms of the multicopper oxidase CueO from Escherichia coli support its functional role as a cuprous oxidase. J. Am. Chem. Soc. 132 (2010), 2005–2015 http://www.ncbi.nlm.nih.gov/pubmed/20088522.
Singh, S.K., Roberts, S.A., McDevitt, S.F., Weichsel, A., Wildner, G.F., Grass, G.B., Rensing, C., Montfort, W.R., Crystal structures of multicopper oxidase CueO bound to copper(I) and silver(I): functional role of a methionine-rich sequence. J. Biol. Chem. 286 (2011), 37849–37857 http://www.ncbi.nlm.nih.gov/pubmed/21903583.
Cortes, L., Wedd, A.G., Xiao, Z., The functional roles of the three copper sites associated with the methionine-rich insert in the multicopper oxidase CueO from E. coli. Metallomics 7 (2015), 776–785 http://www.ncbi.nlm.nih.gov/pubmed/25679350.
Fernandes, A.T., Soares, C.M., Pereira, M.M., Huber, R., Grass, G., Martins, L.O., A robust metallo-oxidase from the hyperthermophilic bacterium Aquifex aeolicus. FEBS J. 274 (2007), 2683–2694 http://www.ncbi.nlm.nih.gov/pubmed/17451433.
Sakuraba, H., Koga, K., Yoneda, K., Kashima, Y., Ohshima, T., Structure of a multicopper oxidase from the hyperthermophilic archaeon Pyrobaculum aerophilum. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 (2011), 753–757 http://www.ncbi.nlm.nih.gov/pubmed/21795787.
Roberts, S.A., Weichsel, A., Grass, G., Thakali, K., Hazzard, J.T., Tollin, G., Rensing, C., Montfort, W.R., Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 99 (2002), 2766–2771 http://www.ncbi.nlm.nih.gov/pubmed/11867755.
Miyazaki, K., A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9 (2005), 415–425 http://www.ncbi.nlm.nih.gov/pubmed/15999224.
Bello, M., Valderrama, B., Serrano-Posada, H., Rudino-Pinera, E., Molecular dynamics of a thermostable multicopper oxidase from Thermus thermophilus HB27: structural differences between the apo and holo forms. PLoS One, 7, 2012, e40700 http://www.ncbi.nlm.nih.gov/pubmed/22808237.
Medigue, C., Krin, E., Pascal, G., Barbe, V., Bernsel, A., Bertin, P.N., Cheung, F., Cruveiller, S., D'Amico, S., Duilio, A., Fang, G., Feller, G., Ho, C., Mangenot, S., Marino, G., Nilsson, J., Parrilli, E., Rocha, E.P., Rouy, Z., Sekowska, A., Tutino, M.L., Vallenet, D., von Heijne, G., Danchin, A., Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res. 15 (2005), 1325–1335 http://www.ncbi.nlm.nih.gov/pubmed/16169927.
Roulling, F., Godin, A., Cipolla, A., Collins, T., Miyazaki, K., Feller, G., Activity-stability relationships revisited in blue oxidases catalyzing electron transfer at extreme temperatures. Extremophiles, 2016, 621–629 http://www.ncbi.nlm.nih.gov/pubmed/27315165.
Palmer, T., Berks, B.C., The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 10 (2012), 483–496 http://www.ncbi.nlm.nih.gov/pubmed/22683878.
Stolle, P., Hou, B., Bruser, T., The Tat substrate CueO is transported in an incomplete folding state. J. Biol. Chem. 291 (2016), 13520–13528 http://www.ncbi.nlm.nih.gov/pubmed/27129241.
Silva, C.S., Durao, P., Fillat, A., Lindley, P.F., Martins, L.O., Bento, I., Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuni CGUG11284: characterization of a metallo-oxidase. Metallomics 4 (2012), 37–47 http://www.ncbi.nlm.nih.gov/pubmed/22127520.
Classen, T., Pietruszka, J., Schuback, S.M., A new multicopper oxidase from Gram-positive bacterium Rhodococcus erythropolis with activity modulating methionine rich tail. Protein Expr. Purif 89 (2013), 97–108 http://www.ncbi.nlm.nih.gov/pubmed/23485678.
Roberts, S.A., Wildner, G.F., Grass, G., Weichsel, A., Ambrus, A., Rensing, C., Montfort, W.R., A labile regulatory copper ion lies near the T1 copper site in the multicopper oxidase CueO. J. Biol. Chem. 278 (2003), 31958–31963 http://www.ncbi.nlm.nih.gov/pubmed/12794077.
Feller, G., Protein stability and enzyme activity at extreme biological temperatures. J. Phys. Condens. Matter, 22, 2010, 323101 https://pubmed.ncbi.nlm.nih.gov/21386475.
Papa, R., Parrilli, E., Sannia, G., Engineered marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125: a promising micro-organism for the bioremediation of aromatic compounds. J. Appl. Microbiol. 106 (2009), 49–56 http://www.ncbi.nlm.nih.gov/pubmed/19120609.
Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8 (2011), 785–786 http://www.ncbi.nlm.nih.gov/pubmed/21959131.
Musci, G., Di Marco, S., Bellenchi, G.C., Calabrese, L., Reconstitution of ceruloplasmin by the Cu(I)-glutathione complex. Evidence for a role of Mg2+ and ATP. J. Biol. Chem. 271 (1996), 1972–1978 http://www.ncbi.nlm.nih.gov/pubmed/8567646.
Felsenfeld, G., The determination of cuprous ion in copper proteins. Arch. Biochem. Biophys. 87 (1960), 247–251 http://www.ncbi.nlm.nih.gov/pubmed/13822131.
Buchan, D.W., Minneci, F., Nugent, T.C., Bryson, K., Jones, D.T., Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res. 41 (2013), W349–W357 http://www.ncbi.nlm.nih.gov/pubmed/23748958.
Davis, A.V., O'Halloran, T.V., A place for thioether chemistry in cellular copper ion recognition and trafficking. Nat. Chem. Biol. 4 (2008), 148–151 http://www.ncbi.nlm.nih.gov/pubmed/18277969.
Jiang, J., Nadas, I.A., Kim, M.A., Franz, K.J., A Mets motif peptide found in copper transport proteins selectively binds Cu(I) with methionine-only coordination. Inorg. Chem. 44 (2005), 9787–9794 http://www.ncbi.nlm.nih.gov/pubmed/16363848.
Kim, C., Lorenz, W.W., Hoopes, J.T., Dean, J.F., Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J. Bacteriol. 183 (2001), 4866–4875 http://www.ncbi.nlm.nih.gov/pubmed/11466290.