Analytical evaluation of the Nittobo Medical tartrate resistant acid phosphatase isoform 5b (TRACP-5b) EIA and comparison with IDS iSYS in different clinically defined populations.
Cavalier, Etienne; LUKAS, Pierre; DELANAYE, Pierre
2022 • In Clinical Chemistry and Laboratory Medicine, 60 (3), p. 394-400
TRACP-5b; analytical validation; bone resorption; bone turnover marker; harmonization; tartrate resistant acid phosphatase isoform 5b
Abstract :
[en] OBJECTIVES: Tartrate-resistant acid phosphatase, isoform 5b (TRACP-5b) is a bone resorption marker not influenced by renal function or food intake. TRACP-5b can be measured with Nittobo Medical enzymatic-immunoassay and IDS-iSYS automated immunoassay. We evaluated the Nittobo assay and established reference ranges for a Western-European population. We compared Nittobo and IDS results in different well-defined clinical populations. METHODS: We established the limits of detection and quantification (LOD-LOQ), linearity, imprecision and the reference ranges in 119 males, 50 women (<45 years) and 120 women (>60 years) for TRACP-5b with the Nittobo assay. We compared both assays in 30 hemodialyzed (HD), and 40 stage 3-5 patients suffering from chronic kidney disease (CKD), 40 patients suffering from rheumatoid arthritis and osteoporosis and 80 post-menopausal women. We measured TRACP-5b, β-crosslaps (β-CTX), bone alkaline phosphatase (B-ALP) and PTH in 20 hemodialyzed (HD) and 40 CKD patients. RESULTS: LOD and LOQ were 0.02 and 0.35 U/L. CV ranged from 8.3 to 4.3% (2/5 samples presenting CV > desirable CV). Method was linear up to of 11.3 U/L. Upper and lower limits of normality were 0.8-7.6 U/L in men, 0.9-4.7 U/L in women <45 and 0.9-7.1 U/L in women >60. The regression equation between the 2 methods was Nittobo = 1.13 (95% CI: 1.09-1.16) × iSYS - 0.4 (95% CI: -0.5; -0.3). TRACP-5b and b-ALP were in their respective reference ranges for most of CKD and HD patients. That was not the case for β-CTX, which increased with decreasing eGFR. CONCLUSIONS: Nittobo TRACP-5b presents interesting analytical features and a good concordance with IDS iSYS. These methods could thus potentially be harmonized.
Disciplines :
Urology & nephrology Laboratory medicine & medical technology
Author, co-author :
Cavalier, Etienne ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
LUKAS, Pierre ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Bone and cartilage markers laboratory
DELANAYE, Pierre ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de néphrologie
Language :
English
Title :
Analytical evaluation of the Nittobo Medical tartrate resistant acid phosphatase isoform 5b (TRACP-5b) EIA and comparison with IDS iSYS in different clinically defined populations.
Cassady, AI, King, AG, Cross, NCP, Hume, DA. Isolation and characterization of the genes encoding mouse and human type-5 acid phosphatase. Gene 1993;130:201-7. https://doi.org/10.1016/0378-1119(93)90420-8.
Janckila, AJ, Yam, LT. Biology and clinical significance of tartrate-resistant acid phosphatases: new perspectives on an old enzyme. Calcif Tissue Int 2009;85:465-83. https://doi.org/10.1007/s00223-009-9309-8.
Yaziji, H, Janckila, AJ, Lear, SC, Martin, AW, Yam, LT. Immunohistochemical detection of tartrate-resistant acid phosphatase in non-hematopoietic human tissues. Am J Clin Pathol 1995;104:397-402. https://doi.org/10.1093/ajcp/104.4.397.
Chu, P, Chao, TY, Lin, YF, Janckila, AJ, Yam, LT. Correlation between histomorphometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am J Kidney Dis 2003;41:1052-9. https://doi.org/10.1016/s0272-6386(03)00203-8.
Halleen, JM, Ylipahkala, H, Alatalo, SL, Janckila, AJ, Heikkinen, JE, Suominen, H, et al. Serum tartrate-resistant acid phosphatase 5b, but not 5a, correlates with other markers of bone turnover and bone mineral density. Calcif Tissue Int 2002;71:20-5. https://doi.org/10.1007/s00223-001-2122-7.
Saunders, PTK, Renegar, RH, Raub, TJ, Baumbach, GA, Atkinson, PH, Bazer, FW, et al. The carbohydrate structure of porcine uteroferrin and the role of the high mannose chains in promoting uptake by the reticuloendothelial cells of the fetal liver. J Biol Chem 1985;260:3658-65. https://doi.org/10.1016/s0021-9258(19)83673-6.
Halleen, J, Hentunen, TA, Hellman, J, Väänänen, HK. Tartrate-resistant acid phosphatase from human bone: purification and development of an immunoassay. J Bone Miner Res 1996;11:1444-52. https://doi.org/10.1002/jbmr.5650111011.
Vasikaran, S, Eastell, R, Bruyère, O, Foldes, a. J, Garnero, P, Griesmacher, A, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards. Osteoporos Int 2011;22:391-420. https://doi.org/10.1007/s00198-010-1501-1.
Hannon, RA, Clowes, JA, Eagleton, AC, Al Hadari, A, Eastell, R, Blumsohn, A. Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone 2004;34:187-94. https://doi.org/10.1016/j.bone.2003.04.002.
Cavalier, E, Delanaye, P, Moranne, O. Variability of new bone mineral metabolism markers in patients treated with maintenance hemodialysis: implications for clinical decision making. Am J Kidney Dis 2013;61:847-8. https://doi.org/10.1053/j.ajkd.2012.12.013.
Halleen, JM, Alatalo, SL, Suominen, H, Cheng, S, Janckila, AJ, Väänänen, KH. Tartrate-resistant acid phosphatase as a serum marker of bone resorption. J Bone Miner Res 2000;15:1337-45. https://doi.org/10.1359/jbmr.2000.15.7.1337.
Nishizawa, Y, Miura, M, Ichimura, S, Inaba, M, Imanishi, Y, Shiraki, M, et al. Executive summary of the Japan Osteoporosis Society guide for the use of bone turnover markers in the diagnosis and treatment of osteoporosis (2018 edition). Clin Chim Acta 2019;498:101-7. https://doi.org/10.1016/j.cca.2019.08.012.
Shidara, K, Inaba, M, Okuno, S, Yamada, S, Kumeda, Y, Imanishi, Y, et al. Serum levels of TRAP5b, a new bone resorption marker unaffected by renal dysfunction, as a useful marker of cortical bone loss in hemodialysis patients. Calcif Tissue Int 2008;82:278-87. https://doi.org/10.1007/s00223-008-9127-4.
Evenepoel, P, Claes, K, Meijers, B, Laurent, MR, Bammens, B, Naesens, M, et al. Natural history of mineral metabolism, bone turnover and bone mineral density in de novo renal transplant recipients treated with a steroid minimization immunosuppressive protocol. Nephrol Dial Transplant 2020;35:697-705. https://doi.org/10.1093/ndt/gfy306.
Morris, HA, Eastell, R, Jorgesen, NR, Cavalier, E, Vasikaran, S, Chubb, SAP, et al. Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clin Chim Acta 2017;467:34-41. https://doi.org/10.1016/j.cca.2016.06.036.
Salam, S, Gallagher, O, Gossiel, F, Paggiosi, M, Khwaja, A, Eastell, R. Diagnostic accuracy of biomarkers and imaging for bone turnover in renal osteodystrophy. J Am Soc Nephrol 2018;29:1557-65. https://doi.org/10.1681/asn.2017050584.
Jørgensen, HS, Behets, G, Viaene, L, Bammens, B, Claes, K, Meijers, B, et al. Diagnostic accuracy of noninvasive bone turnover markers in renal osteodystrophy. Am J Kidney Dis 2021. https://doi.org/10.1053/j.ajkd.2021.07.027.
Nishizawa, Y, Inaba, M, Ishii, M, Yamashita, H, Miki, T, Goto, H, et al. Reference intervals of serum tartrate-resistant acid phosphatase type 5b activity measured with a novel assay in Japanese subjects. J Bone Miner Metab 2008;26:265-70. https://doi.org/10.1007/s00774-007-0826-0.
Fraser, CG, Petersen, H, Libeer, J-C, Ricosl, C. Proposals for setting generally applicable quality goals solely based on biology. Pers View Ann Clin Biochem 1997;34:8-12. https://doi.org/10.1177/000456329703400103.
Cavalier, E, Lukas, P, Carlisi, A, Gadisseur, R, Delanaye, P. Aminoterminal propeptide of type I procollagen (PINP) in chronic kidney disease patients: The assay matters. Clin Chim Acta 2013;425:117-8. https://doi.org/10.1016/j.cca.2013.07.016.
KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2017;7:1-59.
Evenepoel, P, Cavalier, E, D'Haese, PC. Biomarkers predicting bone turnover in the setting of CKD. Curr Osteoporos Rep. Current Osteoporosis Reports 2017;15:178-86. https://doi.org/10.1007/s11914-017-0362-3.
Evenepoel, P, Cavalier, E, D'Haese, PC. Bone biomarkers in de novo renal transplant recipients. Clin Chim Acta 2019;501:179-85. https://doi.org/10.1016/j.cca.2019.10.035.
Evenepoel, P, Claes, K, Meijers, B, Laurent, MR, Bammens, B, Naesens, M, et al. Bone mineral density, bone turnover markers, and incident fractures in de novo kidney transplant recipients. Kidney Int 2019;95:1461-70. https://doi.org/10.1016/j.kint.2018.12.024.
Khalil, R, Antonio, L, Laurent, MR, David, K, Kim, NR, Evenepoel, P, et al. Early effects of androgen deprivation on bone and mineral homeostasis in adult men: A prospective cohort study. Eur J Endocrinol 2020;183:181-9. https://doi.org/10.1530/eje-20-0348.
Kikuchi, W, Ichihara, K, Mori, K, Shimizu, Y. Biological sources of variations of tartrate-resistant acid phosphatase 5b in a healthy Japanese population. Ann Clin Biochem 2021;58:358-67. https://doi.org/10.1177/00045632211003941.
Cavalier, E, Eastell, R, Jørgensen, NR, Makris, K, Tournis, S, Vasikaran, S, et al. A multicenter study to evaluate harmonization of assays for C-Terminal telopeptides of type I collagen (ß-CTX): A report from the IFCC-IOF committee for bone metabolism (C-BM). Calcif Tissue Int 2021;108:785-97. https://doi.org/10.1007/s00223-021-00816-5.
Cavalier, E, Souberbielle, J-CC, Gadisseur, R, Dubois, B, Krzesinski, J-MM, Delanaye, P. Inter-method variability in bone alkaline phosphatase measurement: clinical impact on the management of dialysis patients. Clin Biochem 2014;47:1227-30. https://doi.org/10.1016/j.clinbiochem.2014.04.007.
Cavalier, E, Eastell, R, Jørgensen, NR, Makris, K, Tournis, S, Vasikaran, S, et al. A multicenter study to evaluate harmonization of assays for N-Terminal propeptide of type I procollagen (P1NP): A report from the IFCC-IOF Joint Committee for Bone Metabolism. Clin Chem Lab Med 2019;25:1546-55. https://doi.org/10.1515/cclm-2019-0174.